

#### CONSERVATIVA, ARTROSCOPIA E PEDIATRICA



- 1. Peri-acetabular osteotomy. Indications and Outcomes. Is it Joint Preserving?
- 2. A new mini open anterior-oblique approach for femoroacetabular impingement
- 3. Tranexamic Acid Reduces the Blood Loss and Transfusion Requirements following Periacetabular Osteotomy
- 4. Laser Osteoperforation. A Novel Minimally Invasive Technique for Treatment of Avascular Necrosis of the Femoral Head
- 5. Periacetabular Osteotomy: grey zones and limits of indication
- 6. Management of Osteonecrosis of the Femoral Head
- 7. Capsular detensioning in hip osteoarthritis
- 8. Arthroscopic Treatment of Femoroacetabular Impingement following Slipped Capital Femoral Epiphysis
- 9. Hip arthroscopy in Femoro Acetabular Impingement (FAI): Chondral Damage is a good predictor of outcome
- 10. Extracapsular vs standard approach in hip arthroscopy: our experience
- 11. Hip Arthroscopy a new vision about the Hip Pathology. 3 years experience with the out-inside technique
- 12. Surgical dislocation for pediatric and adolescent hip deformity: clinical and radiographic results at 3 years fu
- 13. Proximal femur reconstruction in the first decade of life: the challenge of hip reconstruction in a growing patient
- 14. Late correction of neck deformity in healed severe SCFE a reliable option with encouraging midterm clinical outcomes
- 15. Hip replacement in children
- 16. SCFE
- 17. Adolescent/Young Adult Sequelae of Perthes' Disease
- 18. Algorithm for surgical treatment of dislocated hip in Cerebral Palsy
- **19.** Hip Arthroscopy in the Immature Skeleton

Peri-acetabular osteotomy Indications and Outcomes Is it Joint Preserving?

#### Marcus J K Bankes

Consultant Orthopaedic Surgeon Guy's and St Thomas' NHS Trust London, UK







fortiusclinic





# Anatomical abnormalities in hip dysplasia

- Shallow and/or upwardly sloping acetabulum
  - Abnormal slope may be lateral and/or anterior
- Increased femoral neck anteversion and/or coxa valga
- Mature skeleton
- Deformity induced by childhood surgery

Dysplastic hips develop symptoms well before degenerative change appears







## Asymptomatic phase

- Uncovered femoral head
- Hypertrophy of labrum
  - Response to chronic shear stress
- Muscular compensation

## Symptomatic phase

- Instability develops
  - Increased or unaccustomed activity
  - Increased body mass / pregnancy
  - Muscle weakness
- Labrum tears
  - Loss of joint sealing function
- Cyst formation
- Damage to articular cartilage

## The "Acetabular Rim Syndrome"

 Klaue, Durnin and Ganz (1991) JBJS 73-B, 423



## Improve cover



## Rationale for osteotomy of the hip

- Improve cover of femoral head
- Increase load bearing area
- Offload areas of early damage
- Symptom relief
  - Better function
- Delay / arrest degeneration
  - No implants

# Bernese Peri-acetabular osteotomy (PAO) is the best operation

- PAO pioneered by Prof Reinhold Ganz 1980's
- Good pain relief
- Low conversion to THR



- Siebenrock et al (2013) JBJS 95:749-755
- Ganz et al (2008) CORR 466:1633-1644

# Advantages of PAO

- Single cosmetic incision
- Abductor sparing approach
- Straight reproducible cuts
- Pelvic ring intact
- Versatile correction
  - No ligament attachments to fragment
- Easy metal removal























#### Surgical treatment is not a spectrum





## **Hip Preservation**

### Arthroplasty

## Indications for PAO



# Factors predicting failure 4 to 12 years after periacetabular osteotomy

- Age >40yo
- Preoperative Tönnis grade of 2
- Incongruent hip
- Postoperative joint space width of 3 mm or less
- Postoperative center-edge angle of less than 30° or more than 40°
  - Hartig-Andreasen, Troelsen, Muncholm Thillemann & Søballe (2012) CORR 470:11, 2978-87

#### Obesity is a major risk factor for the development of complications after peri-acetabular osteotomy



• E N Novais, G D Potter, J C Clohisy, M B Millis, Y J Kim, R T Trousdale, P M Carry and R J Sierra (2015) BJJ 97-B:1, 29-34



Factors associated with stress fractures after periacetabular osteotomy

- Older patients
  - Worse bone quality
- Severe dysplasia
  - Greater correction and displacement at pubic ramus osteotomy
- Superior pubic non-union
  - A Malviya, W Dandachli, Z Beech, M J K Bankes and J D Witt (2015) Bone Joint J 97-B:1, 24-8

## Indications for PAO

## Good enough joint

- Mobile, congruent, minimal or no degenerative change
- Good enough patient
  - Appropriate symptoms, <40yo, not overweight, athletic, motivated, few comorbidities, non-smoker, social support, realistic expectations



#### Number of green lights necessary
















#### Outcomes of PAO

- Symptom relief
  - Better function
- Delay / arrest degeneration
  - No implants

Large body of evidence favouring acetabular reorientation in dysplasia

- "reduction of pain and enhanced hip function were noted in all studies"
  - Clohisy et al CORR (2009) 467:2041-2052
- Physical Activity Level Improves After PAO
  - Novais et al CORR (2013) 471:981–988



HIP

Comparison of contemporary periacetabular osteotomy for hip dysplasia with total hip arthroplasty for hip osteoarthritis

 "In correctly selected patients, and in the hands of experienced surgeons, PAO should be considered as safe and as clinically effective as THA"

- B. L. Gray, J. B. Stambough, G. R. Baca,
  P. L. Schoenecker, J. C. Clohisy
- Bone Joint J 2015;97-B:1322-7

iHOT-12 scores from open surgery using British Non Arthroplasty Hip Registry https://www.britishhipsociety.com/main?page=NAHR



#### PAO is a durable solution



Time office r enacetabular Osteotomy (years)

Matheney, Kim, Zurakowski, Matero & Millis (2009) J
 Bone Joint Surg Am 91:9, 2113-23

#### Results are improving



•Hartig-Andreasen, Troelsen, Thillemann & Søballe CORR (2012) **470**, 2978-2987

#### Hip arthroscopy and DDH

- Ideally suited for treatment and evaluation of postoperative symptoms
  - 27% (now 3% due to recognition of posts problems)
  - Hartig-Andreasen, Troelsen, Thillemann, Gelineck and Søballe (2015) J Hip Pres Surgery 1-11
- Unlikely to provide durable solution in isolation
  - 32% reoperations at 3.5 years
  - Fukui K, Trindade CA, Briggs KK, Philippon MJ. BJJ (2015) 97-B:1316-21
- Medium term results of simultaneous arthroscopy and PAO awaited
  - Domb et al Arthroscopy (2015) 31, 2199

#### Conclusions

- PAO works best in "green light" cases
  - Avoid >40yo, degenerate, incongruent, overweight
- PAO provides <u>durable</u> symptom relief
- PAO preserves the hip
- PAO should be the default procedure for all but mildest cases of dysplasia
- Hip arthroscopy is best <u>after</u> PAO
  - Hip arthroscopists should establish network with regional open hip preservation service

#### Future challenges

- Evaluation of articular cartilage
  - Advanced imaging techniques dGEMRIC, T2\*



- Cunningham, Jessel, Zurakowski, Millis, & Kim. J Bone Joint Surg Am 88:7, 1540-8
- Hesper et al Skeletal Radiol (2014) 43:1429–1445
- Refined indications for patients >35yo
- Define the role of arthroscopy
- Analgesia and rehabilitation







Peterborough and Stamford Hospitals

oblique approach for femoroacetabular

impingement Mr Kemp Narayanasetty Mr Araz Massraf

# **FAI Surgery**

- The aim of femoro acetabular surgery is to improve hip range of movement and reduce pain.
- It may also help prevent hip arthritis in later life.
- Femoroacetabular impingement: a cause for osteoarthritis of the hip. Ganz R, Parvizi J, Beck M, et al. *Clin Orthop Relat Res* 2003;417:112-20
- Current concepts in the management of femoroacetabular impingement. Crawford JR, Villar RN. *J Bone Joint Surg [Br]* 2005;87-B:1459-62.
- Surgical treatment of femoroacetabular impingement: a systematic review of literature. Clohisy JC, St John LC, Schutz AL. *Clin Orthop Relat Res* 2009.
- Hip preservation surgery: surgical care for femoroacetabular impingement and the possibility of preventing hip osteoarthritis. Carl R. Freeman, Michael G. Azzam and Michael Leunig. *Journal of Hip Preservation Surgery October, 2014*

### **Treatment Principle**

- Restore sphericity to the femoral head.
- Address the pathologic changes in the labrum.

By Open or Arthroscopic approach



# Open approach (Ganz)

- Traumatic approach.
- Risk of AVN.
- Trochanteric non-union and pain.
- Avulsion of ligamentous teres.
- Prolonged operating time.
- Risk of fracture.
- Nerve injury



Open Surgical Dislocation Versus Arthroscopy for Femoroacetabular Impingement: A Comparison of Clinical Outcomes Itamar B. Botser, M.D. et al. The Journal of Arthroscopic & Related Surgery: Volume 27, Issue 2, February 2011.

Treatment of Femoroacetabular Impingement in Athletes Using a Mini–Direct Anterior Approach Steven B. Cohen, Javad Parvizi, et al. Am J Sports Med: Volume 40, July 2012

# Arthroscopic approach

- Steep learning curve.
- Expensive.
- Time consuming.
- High incidence of revisions.
- latrogenic chondral and labral damage
- · Limited panoramic views.
- Traction nerve injuries.

Complications of arthroscopic surgery of the hip. A. V. Papavasiliou and N. V. Bardakos. Bone Joint Res: July 2012 1:131-144.

Hip Arthroscopy: Complications in 1054 Cases. Clarke, M. T.; Arora, A.; Villar, R. N. Clinical Orthopaedics & Related Research: January 2003 - Volume 406 - Issue 1 - pp 84-88



## Aims and objectives

To find safe alternative approach that would provide adequate exposure to treat FAI.

- Minimal complications and less recurrent symptoms.
- · Cost effective.
- · Short learning curve.
- Reproducible.

Other open surgical approaches have shown good results but with complications such as

- nerve injuries, trochanteric non union, pain.
- femoral avascular necrosis.

# **Project Outline**

- Selection based on central or peripheral hip symptoms and signs.
- Central hip problems include labral tear, OA, loose bodies, synovitis and cartilage delamination.
- Peripheral hip problems include FA impingement, IPS, bursitis & others.
- All should had MRI Arthrogram and fluoroscopic intra-articular injection.
- Patients with mainly central hip problems selected for hip arthroscopy.
- Patients with mainly peripheral hip problems for decompression and labral repair using mini open anterior oblique approach.

# Semi-lateral position with hip abduction and no traction



- Anterior oblique approach.
- Small incision (6 CM)







- Sub gluteus medius exposure.
- Controlled capsulotomy.







made via an oblique incision centred over the greater trochanter, parallel to the neck of femur. The fascia lata is divided in line with the incision, and then the inferior part of the gluteus medius is elevated above the neck of femur with a Hohmann retractor under radiological quidance.

This manoeuvre will expose the hip capsule which can be opened between vo stay sutures. The retractors are then ntroduced inside the hip joint above and elow the neck of femur.

moved with a curved osteotome. interior or superior labral tears are also posed and can be repaired with a 5.5 m anchor suture into the acetabulum. The hip is examined for range of ovement and impingement and ubsequently closed in layers.



Any anterior or superior CAM were discharged partial weight-bearing for four to six weeks. Each patient mpingement will be exposed and can be followed a specialised physiotherapy regime.

> Over 370 cases were performed in four years and 100 patients were selected at random for a UCLA scoring assessment. They were scored pre-operatively, three months and finally one year post-surgery.

difference in UCLA scores was not significantly greater than the pre-

#### significantly better than the pre-operative



iliopsoas tendinitis, wound problems, and

Our results demonstrate good functional outcomes with a procedure that is safe, reproducible with a low learning curve and associated with minimal financial cost. The limitation of this approach is that the central hip is not explored. however, it can be combined with hip arthroscopy using knee arthroscopy equipment.

Fundamentally, this approach is associated with a low complication rate, especially injury to the lateral cutaneous nerve which can occur with the Smith-Peterson anterior approach and is not well tolerated by patients.

The recovery from this approach is quick with minimal reported post-operative pain. However, full recovery took about three months with intensive physiotherapy. We plan to follow our patients up over a period of five years.

References hman RA.3r. Repair of the ad



Correspondence to edmond.u@cantab.net

- · Labral repair and cam resection done under fluoroscopy.
- Can combine hip arthroscopy if necessary



**Insertion of Anchor** 



Labral Repair







#### **Cam Resection**





### Radiological appearance

before







• after







#### Advantages of mini open approach

- Allows visualisation of the anterior medial head neck junction
- No surgical hip dislocation.
- Minimal soft tissue stripping
- Preservative with bone removing
- Reduce risk of neck fracture.
- Preserve femoral head blood
- Able to check the ROM.





#### NAHR

- •British Hip Society has set up the Non Arthroplasty Hip Register (NAHR) to monitor the outcome for patients of all other types of surgery on the hip.
- •Clinicians should submit details of all patients undergoing this procedure to the register from both the NHS and the independent health care sectors.
- A prime purpose of the register is to provide information about long-term outcomes.

# Peterborough Experience

#### Data collection

- Scope of the project
  - one operator
- Time Scale
  - From September 2012 to December 2014, min followup 12 months
- Method used in collecting the data
  - Clinical Notes, Database, Questionnaire, Clinic reviews
- NAHR Non Arthroplasty Hip Register

https://www.britishhipsociety.com/main?page=NAHR

| R                                                                   | Username                        |
|---------------------------------------------------------------------|---------------------------------|
| Please call Amplitude if you require support during office hours on | The Username field is required. |
| 0333 014 6363 (tel:0333%20014%206363)                               | Password                        |
| You can email Amplitude customer support anytime at                 |                                 |
| de-clinical.com (mailto:customer.support@amplitude-clinical.com)    |                                 |
|                                                                     | Forgot your password? Log in    |

customer support@

# Peterborough Experience

#### Total 223 patients had surgical treatment

- 110 patients had more peripheral hip problems underwent hip decompression and labral repair using mini open anterior oblique approach.
- 113 patients with central hip problems underwent hip arthroscopy.



•



# Peterborough Experience

- Between September 2012 December 2014
- Total number of patients for mini open approach 110
- Bilateral 2 (in different sessions).
- Mean age 36.
- All had labral changes and 78% had chondral lesions and alpha angle of more than 55 on MRI arthrogram.

#### Presentation

- 78% Alpha angle more than 55 degree and demonstrated positive MR triad
- Commonest type CAM
- Mean duration of symptoms 2 years



Pain/Mechanical Pain

#### Assessment

Patients were evaluated by

- University of California Los Angeles (UCLA) activity level
- International Hip Outcome Tool (iHOT-12) and EQ-5D survey.
- Data entry to Non Arthroplasty Hip Register
  (NAHR) was started from 12014.

71

### Results

#### At 6 months after surgery

- UCLA activity level changed from 3.7 to 5.7
- iHot-12 score changed from 32 to 58
  - indicate reliable return to preoperative activity levels.
- 17 patients reported a return to their specific sports.
- · At most recent evaluation,
  - 2 patients had been converted to total hip arthroplasty.
  - 7 had arthroscopic debridement for recurrent symptoms.

| 60 | Pre-op |
|----|--------|
| 45 |        |
| 30 |        |
| 15 |        |
| 0  |        |

UCLA iHOT

**Hip Scores**
# Complications

Complications included iliopsoas tendinosis in 10 cases, trochanteric bursitis in 8 cases which resolved with simple 9 measures. There were no nerve injuries. 7

| • | IPS                            | 10 (9%)  |
|---|--------------------------------|----------|
| • | trochanteric bursitis          | 8 (7.2%) |
| • | chronic pain                   | 5 (4.5%) |
| • | recurrent symptoms at 6 months | 7 (6.3%) |
| • | THR                            | 2 (1.8%) |
| • | heterotrophic ossification     | None     |
| • | nerve injury / AVN             | None     |
| • | stress/neck fracture           | None     |
|   |                                |          |



5

2

# Complication:

# Conclusions

- The outcome is comparable with existing treatments of FAI.
- No risks of nerve injury and/or avascular necrosis.
- The mini-open anterior-oblique approach is a safe and effective procedure.
- Has quick recovery and allows successful return to high activity levels.
- The approach is reproducible and have low learning curve.
- It is very cost effective and could be used as an introduction to FAI surgery in small budget hospitals.
- Reduced recurrent symptoms after 6 months due to better patient selection by treatment algorithms and better awareness of outcome.

# Other uses of mini open anterior - oblique approach



- · Hip joint wash out.
- · Femoral head fracture fixations.
- · Synovial biopsies.
- · Hip arthroplasty.



# References

- Femoroacetabular impingement: a cause for osteoarthritis of the hip. Ganz R, Parvizi J, Beck M, et al. Clin Orthop Relat Res 2003;417:112-20
- Current concepts in the management of femoroacetabular impingement. Crawford JR, Villar RN. J Bone Joint Surg [Br] 2005;87-B:1459-62.
- Surgical treatment of femoroacetabular impingement: a systematic review of literature. Clohisy JC, St John LC, Schutz AL. Clin Orthop Relat Res 2009.
- NICE interventional procedure guidance [IPG403] Published date: July 2011
- NICE interventional procedure guidance [IPG408] Published date: September 2011
- Focus On Mini-open technique for femoroacetabular impingement.
  M. RIBAS, C. CARDENAS-NYLANDER, V. BELLOTTI, M. TEY, O. MARIN. J Bone Joint Surg 2012

# Thank You

# www.hipimpingement.co.u k www.labral-tear.com



# Tranexamic Acid Reduces the Blood Loss and Transfusion Requirements following Periacetabular Osteotomy

Georgi I. Wassilew, Viktor Janz, Carsten Perka

Center for Musculoskeletal Surgery Orthopaedic Department Charité – University Medicine Berlin

2015 Milano







# **Periacetabular osteotomy (PAO)**

The major cause for postoperative morbidity after periacetabular osteotomy (PAO) is the intra- and postoperative blood loss.



CMSC Centrum für Muskuloskeletale Chirurgie CHARITÉ



### **Causes for blood loss after PAO**

- Surgical trauma
- Procedure time
- Bleeding from the exposed cancellous bone after the osteotomies











**Blood loss after PAO** 

Mean blood loss is approximately 1L (can be up to 4L)

Lee et al. Hip Int. 2013







# **Transfusion rates after PAO**

- 94% of all patients require a blood transfusion
- 20% allogeneic

Pulido et al. J surg orth adv 2008

With the use of standardized predonation protocol

- 92% autogenic transfusions were retransfused
- 16% of all patients still needed additional allogeneic blood transfusions

Atwal, N. S. et al. Hip Int. 2008

CMSC Centrum für Muskuloskeletale Chirurgie





# **Blood loss and transfusion rates after PAO**

There are no recommended pharmacologic agents to address the blood loss in the perioperative management.







# Agents for the reduction of blood loss

Tranexamic acid (TXA) can proactively reduce the blood loss

- Synthetic derivate of the amino acid lysine
- Competitive inhibitor of plasminogen activation
- Inhibitis fibrinolysis
- Supports retention of blood clots



PLASMINOGEN Tranexamic acid PLASMIN FIBRIN & FIBRIN DEGRADATION PRODUCTS



 $(\rightarrow positive and -- | negative effect)$ 

CMSC Centrum für Muskuloskeletale Chirurgie





# Literature

### Intravenous application of TXA effectively reduces:

- 1. Amount of blood transfusions after TKA or THA
- 2. Without increasing the risk of thromboembolic events

Levine et al. JOA 2014 Rajesparan et al. JBJS Br. 2009 Ralley et al. CORR 2010







However, there currently are no published studies, which investigate the effects of TXA on blood loss and thromboembolic events during PAO.







# **Objective**

Can TXA reduce both perioperative blood loss and the rate of blood transfusions without increasing the incidence of thromboembolic events?







### **Propective randomized study**

96 patients (48 each group) undergoing PAO because of DDH

### TXA group

continuous infusion of 10mg/min/kg TXA

from the time of skin incision to wound closure







IULIUS WOLFF INSTIT

### **Both groups**

- Intraoperative blood loss was collected by a cell saver and retransfused postoperatively if an adequate volume was collected
- Standardized anticoagulation with low-molecular-weight heparin (fraxiparin according to weight)







# **Inclusion criteria:**

- Age ranging from 18 to 45 years
- Clinically and radiologically verified DDH
  - Lateral center-edge (CE) angle <25°</li>
  - Anterior center-edge (ACE) angle <25°</li>
  - Acetabular inclination (AI) >10°
  - Femoral head extrusion index (FEI) >25%







# **Exclusion criteria:**

- Preoperative anticoagulation therapy
- Hypersensitivity or allergy to TXA
- History of thromboembolic events
- Hemorrhage
- Hepatic and renal dysfunction (aspartate transaminase-alanine transaminase ratio > 60, creatinine greater than 1.5 mg/dL, or GFR less than 30 mL/minute)
- Seizure
- Coronary stents or prior coronary artery disease
- Congenital or acquired coagulopathy
- Hormone replacement therapy
- Hormonal contraceptive agent (within 7 days prior to surgery)
- Preoperative hemoglobin of less than 10 g/dL

CMSC Centrum für Muskuloskeletale Chirurgie





Amount of blood loss was calculated according to a previously described formula

Gross Anesthesiology 1983

Indication for transfusion

- Clinically relevant symptoms of anemia
- Hemoglobin value below 8 g/dL







# Results







|                          | Non-TXA group | TXA group  | P value |
|--------------------------|---------------|------------|---------|
|                          | (N=48)        | (N=48)     |         |
| Male/femal               | 6/42          | 6/42       | 1       |
| Age (years)              | 31.7 ±10.1    | 27.4 ±7.0  | 0.65    |
| BMI (kg/m <sup>2</sup> ) | 23.5 ±4.0     | 24.2 ±4.7  | 0.8     |
| Operation time (min)     | 92.4 ±20.7    | 85.4 ±15.7 | 0.1     |
| Hb preoperative (g/dL)   | 13.4 ±1.1     | 13.5 ±1.0  | 0.6     |







|                | Non-TXA group | TXA group | P value |
|----------------|---------------|-----------|---------|
|                | (N=48)        | (N=48)    |         |
| Blood loss (L) | 1.9 ±0.9      | 1.5 ±0.7  | *0.01   |







|                         | Non-TXA group | TXA group | P value |
|-------------------------|---------------|-----------|---------|
|                         | (N=48)        | (N=48)    |         |
| Blood loss (L)          | 1.9 ±0.9      | 1.5 ±0.7  | *0.01   |
| Total transfusion rates | 63%           | 13%       | *<0.01  |







|                                     | Non-TXA group | TXA group | P value |
|-------------------------------------|---------------|-----------|---------|
|                                     | (N=48)        | (N=48)    |         |
| Blood loss (L)                      | 1.9 ±0.9      | 1.5 ±0.7  | *0.01   |
| Total transfusion rates             | 63%           | 13%       | *<0.01  |
| Auto-/allogeneic transfusions rates | 37%           | 11%       | *<0.01  |







|                                     | Non-TXA group | TXA group | P value |
|-------------------------------------|---------------|-----------|---------|
|                                     | (N=48)        | (N=48)    |         |
| Blood loss (L)                      | 1.9 ±0.9      | 1.5 ±0.7  | *0.01   |
| Total transfusion rates             | 63%           | 13%       | *<0.01  |
| Auto-/allogeneic transfusions rates | 37%           | 11%       | *<0.01  |
| Autogenic                           | 23%           | 11%       | *<0.01  |







|                                     | Non-TXA group | TXA group | P value |
|-------------------------------------|---------------|-----------|---------|
|                                     | (N=48)        | (N=48)    |         |
| Blood loss (L)                      | 1.9 ±0.9      | 1.5 ±0.7  | *0.01   |
| Total transfusion rates             | 63%           | 13%       | *<0.01  |
| Auto-/allogeneic transfusions rates | 37%           | 11%       | *<0.01  |
| Autogenic                           | 23%           | 11%       | *<0.01  |
| Allogeneic                          | 17%           | 0%        | *<0.01  |







|                                     | Non-TXA group | TXA group | P value |
|-------------------------------------|---------------|-----------|---------|
|                                     | (N=48)        | (N=48)    |         |
| Blood loss (L)                      | 1.9 ±0.9      | 1.5 ±0.7  | *0.01   |
| Total transfusion rates             | 63%           | 13%       | *<0.01  |
| Auto-/allogeneic transfusions rates | 37%           | 11%       | *<0.01  |
| Autogenic                           | 23%           | 11%       | *<0.01  |
| Allogeneic                          | 17%           | 0%        | *<0.01  |
| Retransfusion of cell saver blood   | 44%           | 2%        | *<0.01  |







|                                     | Non-TXA group | TXA group | P value |
|-------------------------------------|---------------|-----------|---------|
|                                     | (N=48)        | (N=48)    |         |
| Blood loss (L)                      | 1.9 ±0.9      | 1.5 ±0.7  | *0.01   |
| Total transfusion rates             | 63%           | 13%       | *<0.01  |
| Auto-/allogeneic transfusions rates | 37%           | 11%       | *<0.01  |
| Autogenic                           | 23%           | 11%       | *<0.01  |
| Allogeneic                          | 17%           | 0%        | *<0.01  |
| Retransfusion of cell saver blood   | 44%           | 2%        | *<0.01  |
| Duration of hospital stay in days   | 10.1 ±1.9     | 9.0 ±1.2  | *0.05   |

CMSC Centrum für Muskuloskeletale Chirurgie





|                                     | Non-TXA group | TXA group | P value |
|-------------------------------------|---------------|-----------|---------|
|                                     | (N=48)        | (N=48)    |         |
| Blood loss (L)                      | 1.9 ±0.9      | 1.5 ±0.7  | *0.01   |
| Total transfusion rates             | 63%           | 13%       | *<0.01  |
| Auto-/allogeneic transfusions rates | 37%           | 11%       | *<0.01  |
| Autogenic                           | 23%           | 11%       | *<0.01  |
| Allogeneic                          | 17%           | 0%        | *<0.01  |
| Retransfusion of cell saver blood   | 44%           | 2%        | *<0.01  |
| Duration of hospital stay in days   | 10.1 ±1.9     | 9.0 ±1.2  | *0.05   |
| Thromboembolic events               | 0             | 0         | 1       |





Positive effects of TXA are:

### Reduced

- 1. Blood loss
- 2. Need for blood transfusions and
- 3. Duration of hospital stay





# Thank you!





#### CMSC Centrum für Muskuloskeletale Chirurgie











# **Laser Osteoperforation**

# A Novel Minimally Invasive Technique for Treatment of Avascular Necrosis of the Femoral Head

International Combined Meeting

British Hip Society & Società Italiana Dell'Anca

Milan, Italy

26<sup>th</sup> November 2015

# Authors



- Dr Mohammed Yakub Ali MBBS MPhil MSc PhD\*
- Mr Shahrier F Sarker мввз мясз +
- Dr Rumana Hossain MBBS BSc (Hons) MRCP FRCR A
- Dr Jahangir M Sarwar MBBS FCPS (Surgery) \*
- Dr Mohammad S Hossain MBBS FCPS (Surgery)\*
- Dr Manash C Sarker MBBS MS (Orthopaedic Surgery) \*
- Dr Mohammed N Kayes MBBS DA (Anaesthesia)\*
- Dr Hans Hainz м.D \*
- \* Institute of Laser Surgery & Hospital, Bangladesh
- + Health Education East of England, Trauma & Orthopaedics, United Kingdom
- ABasildon University NHS Trust, United Kingdom
### Introduction



- Avascular necrosis or osteonecrosis of the femoral head is a potentially devastating condition
- Characterized by death of cellular elements of bone and/or marrow due to the interruption of blood supply
- Often leads to total hip arthroplasty in young patients
- No sole effective method in treating/halting AVN
- Key is to prevent disease progression to collapse of femoral head

#### References

1) JD Kelly et al. Femoral Head Avascular Necrosis. http://emedicine.medscape.com. Last accessed 24/11/15 2) C Cooper et al. The epidemiology of osteonecrosis: findings from the GPRD and THIN databases in the UK. Osteoporosis Int. 2010 Apr;21(4): 569-577



# Epidemiology

- 1.1 2.3/100,000 per year in the UK
- Estimated 750 2000 new cases in the UK per year
- 10,000 20,000 new cases in the USA yearly
- 5-18% of more than 0.5 million Total Hip Arthroplasty in the USA
- Unknown incidence in Bangladesh and 3<sup>rd</sup> World Countries but tends to affect lower socioeconomic classes
- Usually between 20-50 years of age

#### References

1) JD Kelly et al. Femoral Head Avascular Necrosis. http://emedicine.medscape.com. Last accessed 24/11/15 2) C Cooper et al. The epidemiology of osteonecrosis: findings from the GPRD and THIN databases in the UK. Osteoporosis Int. 2010 Apr;21(4): 569-577

3) AVN Charity UK. http://avncharity.org.uk. Last accessed 24/11/15



# Pathogenesis

- Multiple causes
- Final common pathway from decreased blood flow to femoral head
- Increased intraosseous pressure
- Results in cellular death, fracture and collapse of articular surface
- Healing poor due to poor osteoblastic activity
- 67% 85% of untreated AVN shown to have collapse

#### References

1) Musso ES et al. Results of conservative management if osteonecrosis of the femoral head. A retrospective review. Clin Orthop Relat Res 1986;(207):209-215

2) Moya-Angeler J et al. Current concepts on osteonecrosis of the femoral head. World J Orthop 2015 Sept 18 ;6(8):590-601

3) Mont M, Hungerford D. Non-traumatic avascular necrosis of the femoral head. JBJS March 1995;77A(3):459-474



# Laser Therapy

- Laser therapy has been shown to induce angiogenesis and stimulation of bone tissue in various studies
- Hypothesis is that the heat generated destroys necrotic tissue whilst stimulating the reparative process by angiogenesis and osteoblast activation
- Also decreases the intraosseous pressure at the same time

#### References

 Cury V et al. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. J Photochem Photobiol B 2013 August 5;125: 164-170
 Effects of low level laser therapy on inflammatory and angiogenic gene expression during the process of bone healing: a microarray study. J Photochem and Photobiology B: Biology 154(2016): 8-15

3) Privalov VA et al. Laser osteoperforation for treatment of inflammatory and destructive bone diseases. Proc SPIE 2009;7373

4) Privalov VA et al. Hyperthermal effect of laser osteoperforation in treatment of experimental acute purulent osteomyelitis. Proc SPIE 1999;3565:72-9





# • To assess the safety and efficacy of laser osteoperforation as a treatment for AVN of the femoral head.



### Methods

- 40 patients with 62 hips (various stages)
- July 2009 to March 2013
- Informed consent and ethical approval
- Excluded unwilling patients, psychological disorders, acute fractures, chronic infection, uncontrolled diabetes mellitus



#### Methods

- Preoperative evaluation done using Harris Hip Score
- Anteroposterior and lateral radiographs of Hips
- Ficat and Arlet Staging
- Preoperative MRI in all cases

References

 Harris W. Traumatic arthritis of the hip after dislocation and acetabular fractures: Treatment by Mold arthroplasty. JBJS June 1969;51A(4): 737-755
 Ficat RP. Idiopathic bone necrosis of the femoral head – Early diagnosis and treatment. JBJS Br Jan 1985;67B(1): 3-9



### Equipment Used

- Fluoroscopy unit (Siemens, Germany)
- Fluoroscopy compatible operating table (Siemens, Germany)
- Surgical Laser (970mm diode laser, type: LAHTA MILON; Milon Group, St Petersburg, Russia)
- Spinal Needles 18G, 88mm (Spinocan, B Braun, Germany)
- Sterile WF 400/440/465P Poliimid with SMA-905 connector optical fibre for delivering laser energy (made in Russia)



### Technique

- Spinal anaesthetic
- Aseptic cleaning and draping
- 1 3 18G needles from skin to bone
- 30 watts in continuous mode
- 3 5 minutes



 Trans-trochanteric osteoperforations – from bony cortex to centre of head using 970mm diode laser



### Methods

- 3 5 18G spinal needles perforating anterior cortex of head
- 16-20 watts in 10 ms pulse mode
- 1-3 minutes



 Trans-capital laser osteoperforation



### Post operatively

- Bed rest for 3 weeks
- NWB to FWB progressively
- All followed up at 3 weeks, 3 months, 6 months and 12 months
- Only those with minimum 3 follow up visit included
- HHS and x-rays at every visit



# **Results - Demographics**

- 28 male : 12 female
- 20 90 years (mean
  37.4 years)
- 55% steroid
- 25% idiopathic
- 20% posttraumatic

| Age Range (Years) | Number | Percentage (%) |
|-------------------|--------|----------------|
| 20 - 30           | 14     | 35             |
| 31 - 40           | 14     | 35             |
| 41 – 50           | 5      | 12.5           |
| 51 - 60           | 5      | 12.5           |
| 61 - 70           | 1      | 2.5            |
| > 70              | 1      | 2.5            |
| Total             | 40     | 100            |

Table 1: Age Distribution of patients



### **Results - Demographics**

| Ficat & Arlet Stage | Number of Hips | Percentage (%) |
|---------------------|----------------|----------------|
| Stage I             | 15             | 24.2           |
| Stage II            | 10             | 16.1           |
| Stage III           | 17             | 27.5           |
| Stage IV            | 20             | 32.2           |
| Total               | 62             | 100            |

Table 2: Distribution of involved hips according to radiological stage (Ficat & Arlet)



#### Results - Outcome

- Average preoperative HHS: 31.4
- Average postoperative HHS: 82.4

| Stage   | No. of Patients | HHS        |           |           |          |
|---------|-----------------|------------|-----------|-----------|----------|
| (preop) |                 | Excellent  | Good      | Fair      | Poor     |
| I       | 15              | 12 (80%)   | 2 (13.3%) | 1(6.7%)   | 0        |
| II      | 10              | 6 (60%)    | 2 (20%)   | 2 (20%)   | 0        |
| III     | 17              | 4 (23.5%)  | 5 (29.4%) | 7 (41.2%) | 1 (5.9%) |
| IV      | 20              | 3 (15%)    | 4 (20%)   | 8 (40%)   | 5 (25%)  |
| Total   | 62              | 25 (40.3%) | 13 (21%)  | 18 (29%)  | 6 (9.7%) |

Table 3: Outcome according to HHS. After a minimum of 3 follow up visits (at 10 months from surgery) onwards



### Results

#### No patient has needed a total hip arthroplasty as yet



### Results – Case Example



Fig 1: Preop xray of 38 year old male. Ficat IV. HHS 15



# Results – Case Example



Fig 1: Post op xray of same patient 4 years later. Ficat II. HHS 85



# Complications

- Only 2 complications observed in study (3.23%)
  - puncture site infection treated with oral antibiotics
  - breakage of needle which was retrieved via small incision along
- Potential other complications
  - Haemarthrosis
  - Femoral head fragmentattion
  - Neck of femur fracture
  - > Soft tissue injury from malpositioning of needle
  - Damage to femoral nerves and vessel



### Conclusion

- Laser osteoperforation is an effective treatment modality for AVN of the femoral head
- Minimally invasive
- Safe
- Effective at all stages, more so in stage I & II
- Cost effective (about USD\$ 1000 including hospital stay)
- Can be done multiple times
- Delays need for THA



### Limitations

- Non randomized trial
- Needs better recording of data
- Needs statistical analysis
- Did not look specifically at how many patients improved in Ficat & Arlet staging
- Did not calculate pre and post op difference in HHS for each individual patient
- Needs clearer definition of how many needles to put in per hip
  - Limitations of Ficat & Arlet Classification



### Recommendations

- Needs more long term follow up
- More numbers needed
- Needs proper randomized controlled trial if possible
- Collaboration with other centres/countries
- Consider MRI for all hips post operatively
- Needs documentation of downstaging of Ficat & Arlet classification
- Statistical analysis
- Better classification systems/diagnostic tools for AVN to pick up those in early AVN



Periacetabular Osteotomy: grey zones and limits of indication

> Reinhold Ganz Emeritus University of Bern, Switzerland

#### Good indication - good outcome



#### Poor indication - poor outcome



#### 1984 - 1. clinical case after 25 cadaver trials





#### **PAO: Predictors of failures**

#### Sambandam SN et al. Int Orthop. 2009; 33: 148-8

| Table 1 Studies included in this review |      |                   |                |           |                   |
|-----------------------------------------|------|-------------------|----------------|-----------|-------------------|
| Study                                   | Year | Number<br>of hips | Average<br>age | Follow-up | Number<br>of THAs |
| Ganz et al. [7]                         | 1988 | 75                | 29             | NR        | 1                 |
| Trousdale et al. [20]                   | 1995 | 42                | 37             | 48        | 6                 |
| MacDonald et al. [12]                   | 1999 | 13                | 23             | 76        | 0                 |
| Murphy et al. [16]                      | 1999 | 94                | 29             | 60        | 2                 |
| Murphy and<br>Millis [15]               | 1999 | 130               | 27             | 45        | 5                 |
| Ganz et al. [19]                        | 1999 | 75                | 29.3           | 135       | 13                |
| Crockarell et al. [4]                   | 1999 | 21                | 21             | 38        | 1                 |
| Davey and<br>Santore [6]                | 1999 | 70                | 36.5           | NR        | 0                 |
| Trumble et al. [14]                     | 1999 | 19                | 30.9           | 45        | 2                 |
| Matta et al. [13]                       | 1999 | 66                | 33.6           | 48        | 5                 |
| Trumble et al. [22]                     | 1999 | 123               | 32.9           | 51        | 7                 |
| Trousdale et al. [21]                   | 2002 | 9                 | 34             | NR        | 0                 |
| van Bergayk and<br>Garbuz [23]          | 2002 | 25                | 32             | 33        | 0                 |
| Katz et al. [10]                        | 2005 | 8                 | 16.5           | 67        | 0                 |
| Armand et al. [1]                       | 2005 | 12                | 35             | 24        | 0                 |
| Clohisy et al. [2]                      | 2005 | 16                | 17.6           | NR        | 0                 |
| Pogliacomi<br>et al. [18]               | 2005 | 36                | 35             | 48        | 2                 |
| Kralj et al. [11]                       | 2005 | 26                | 34             | 144       | 4                 |
| Peters et al. [17]                      | 2006 | 83                | 28             | 46        | 4                 |
| Cunningham<br>et al. [5]                | 2006 | 52                | 28.4           | 19        | 5                 |
| Hseih et al. [9]                        | 2006 | 36                | 36             | 24        | 0                 |
| Clohisy et al. [3]                      | 2007 | 24                | 22.7           | 53        | 0                 |
| Garras et al. [8]                       | 2007 | 58                | 37.6           | 66.7      | 4                 |

#### Methods

| Studies             | 23      |
|---------------------|---------|
| Patients            | 1113    |
| Followup (years)    | 2 - 14  |
| Failures (patients) | 61 (5%) |

#### Results

|                    | ODDs |
|--------------------|------|
| High OA grade      | 3.36 |
| Preop. subluxation | 1.22 |
| Low M d 'A score   | 1.59 |
|                    |      |

THA total hip arthroplasty



#### **Indication for PAO**

#### **Ideal indication**

Young patient, round femoral head, congruent but dysplatic acetabulum, No cartilage or labrum damage

#### Good indication

Congruency in abduction, labral avulsion, Minor acetabular cartilage damage, Small acetabular rim ganglion

#### Moderate indication

Moderate joint incongruency in abduction, Increasing joint space in abduction/ flexion, More severe cartilage damage, young age, Age over 40y

#### Contraindication

OA = > 2 High subluxation/ dislocation Limited acetabular perfusion Severe incongruency Extremely shallow acetabulum Age < 5y 060550 SM 23.11.87

#### Anterior subluxation

#### 060550 SM 23.11.87

#### mimicing high grade O/



#### 15-years after PAO

#### **Indication for PAO**

#### **Special aspects**

#### Borderline dysplasia but pain from impingement Open triradiate cartilage

Bilat. borderline acetabular dysplasia Chronic pain left hip


**Î** Anterior head migration Surgical steps: Hip dislocation and labrum refixation Subtrochanteric derotation PAO





### 40<u>95</u>

### 2048

 $\cap$ 

#### 4y result with painfree motion and loading

congenital coxa vara, severe acetabular dysplasia: Subtroch valgus OT + PAO PAO-injury to the growth plate too small to create growth related deformity



### **Indication for PAO**

Increased risk factors

Limited vascularity of the fragment, Scaring around the sciatic nerve Arthrogryposis Extreme deformity

26y old female Extreme retroversion after two attempts of reorientation. Recovered from sciatic nerve palsy

First step: sciatic nerve release Second step: anteverting PAO

19y, female Posttraumatic protrusio interfering with pregnancy and normal delivery

First normal delivery 13 months after reverse periacetabular correction

OPS



### Varus-IO + PAO with extreme medialisation Cave femoral nerve stretching

### **Indication for PAO**

### Contraindication OA = > 2Extremely shallow acetabulum Severe incongruency High subluxation/ dislocation Limited acetabular perfusion Age < 6y

40<u>95</u>

2048

Extremely shallow acetabulum without anterior and posterior wall. Candidate for a Codivilla-Colonna capsuloplasty



13y, female. Dislocation with secondary acetabulum



Codivilla-Colonna procedure with derotation and shelf



Patient is considering her hip as normal



PAO is a versatile procedure in hip preservation surgery

# Indication for PAO should be the result of an individualized evaluation

Decision making in borderline hips is always difficult; radial arthro-MRI may be helpful

Degree of cartilage degeneration together with age are the most frequent parameters for not to indicate a PAO



# MANAGEMENT OF OSTEONECROSIS OF THE FEMORAL HEAD

### Current practice of members of the British Hip Society 2015

H. Colaco<sup>1</sup>, J. Davidson<sup>2</sup>, D. Davenport<sup>3</sup>, M. Norris<sup>4</sup>, M. Bankes<sup>5</sup>, Z. Shah<sup>5</sup>

St George's University Hospital<sup>1</sup>, RNOH Stanmore<sup>2</sup>, PRUH Bromley<sup>3</sup>, Darent Valley Hospital<sup>4</sup>, Guys & St Thomas' Hospital<sup>5</sup>

### Introduction

- □ Incidence of new ONFH cases 20,000/yr (USA)
- Typically affects patients aged 30-50 years
- Multifactorial cause
- Wide range of options for treatment
  - Risk factor modification
  - Non-operative therapy
  - Core decompression and 'joint preserving surgery'
  - Arthroplasty in advanced disease

#### No national guidelines in UK for management

# Survey Method

Aim: To report current practice of UK hip specialists regarding management of ONFH

- Single stage internet survey 2015
- □ 352 Consultant members of BHS (115 responses)
  - Demographics
  - Experience (years, fellowship, operations)
  - 8 scenarios of symptoms and stage of ONFH for a 24yr and 48yr old patient
    - Surgeons asked to indicate their preferred treatment from a list of interventions

### Scenarios covered each stage of osteonecrosis



Provided by Mr M Bankes, FRCS(Tr&Orth)

RESULTS

# Demographics



Number of years of orthopaedic experience

55% - Hip Fellowship UK38% - Hip Fellowship abroad



# RESPONSES TO CLINICAL SCENARIOS

## **Radiographic Classifications**

- 89% of respondents used Ficat & Arlet classification to assess stage of ONFH
- □ 58 % used 'pre-collapse' and 'post-collapse' stages



### Management of symptomatic pre-collapse ONFH

- □ 24yr patient
  - **•** Non-operative = 41%
  - □ Core decompression = 52% (JPS = 54%)
  - THA = 4% (Arthroplasty = 5%)

48yr patient

- **Non-operative** = 46%
- Core decompression = 44% (JPS = 45%)
- THA = 9% (Arthroplasty = 9%)

# Management of post-collapse ONFH

### 24yr patient

- **Non-operative** = 7%
- □ Core decompression = 28% (JPS = 41%)
- THA = 49% (Arthroplasty = 52%)

48yr patient

- **\square** Non-operative = 9%
- Core decompression = 22% (JPS = 25%)

THA = 63% (Arthroplasty = 65%)

## Effect of patient age on intervention

No difference in operative vs non-operative, regardless of stage

- 24yr: 67.9% operative
  48yr: 63.2% operative
  P = 0.11
- Joint preserving procedures more commonly selected in 24yr old patient

□ Arthroplasty more commonly selected in 48yr old patient

### Effect of patient symptoms on intervention



## Stage at which arthroplasty offered



# Trends in type of arthroplasty



### Operation type by fellowship training status

#### □ In pre-collapse ONFH

- **\square** Trend for more operative intervention (41% vs 24%, P = 0.05)
- No significant difference in:
  - Joint preserving procedures (42% vs 29%)
  - Arthroplasty (2% vs 6%)
- □ In post-collapse ONFH
  - No significant difference in:
    - Operative intervention (94% vs 91%)
    - Joint preserving procedures (30% vs 32%)
    - Arthroplasty (66% vs 68%)

# Summary of findings

#### Patient age and symptoms important for operative decision making

#### Core decompression & Joint preserving surgery

- Most common operative intervention in pre-collapse ONFH
- More commonly used in younger patients than older patients

#### Total Hip Arthroplasty

- Most common operative intervention in post-collapse ONFH
- More commonly used in older patient than younger patients
- Arthroplasty used at earlier stage of disease in older patients
- Uncemented THA most popular regardless of age

#### Fellowship training

- Small sample size limits power
- Possible trend towards more operative intervention and JPS in pre-collapse ONFH

# Thank you






#### Chief: Prof. Cerulli



POLICLINICO UNIVERSITARIO AGOSTINO GEMELLI

#### Capsular detensioning in hip osteoarthritis.



<u>Placella Giacomo</u>, Speziali Andrea, Chillemi Marco, Tei Matteo Maria, Cerulli Giuliano.

Istituto di Ricerca Traslazionale per l'Apparato Locomotore -Nicola Cerulli - Lpmri

Every orthopaedic surgeon raises the question of how can manage symptomatic Hip OA in very elderly patients?

# Hip replacement in Elderly patients imply:

- Longer recovery time
- High Costs (\$ £ €)
- High clinical costs:
  Dislocation (3% 4,6%)
  - •Thromboembolism
  - Infection
  - •Femoral stem fracture
  - Polyethylene wear
  - Periprosthetic femur fracture
  - Acetabular component loosening
  - •Heterotopic Ossification 0.6% to 61.7%



#### Main Cause: Comorbidities Cardiac failure Neurological disease BPCO Renal failure Obesity





LYNCH

Total Hip Replacement is the best solution in elderly ? Not always



THE COCHRANE **COLLABORATION**<sup>®</sup> Alberto Migliore. 21 Umberto Massafra, 1 Emanuele Bizzi, 1 Francesca Vacca, 1 Severino Martin-Martin, 2 Mauro Granata, 3 Andrea Alimonti,1 and Sandro Tormenta4

#### **Current Alternative to Total Hip Replacement in elderly**

| Therapeutic Exercises                      | Recommended            |
|--------------------------------------------|------------------------|
| Pharmacological therapies: bisphosphonates | Limited evidence       |
| Pharmacological therapies: Corticosteroid  | Short term pain relief |
| Pharmacological therapies: hyaluronic Acid | Short term pain relief |
| Joint Lavage                               | Not enough             |







#### high expectations, limited evidence



Matsuda DK. Protrusio acetabuli: Contraindication or indication for hip arthroscopy? And the case for arthroscopic treatment of global pincer impingement. Arthroscopy 2012;

OHilary B. Price

How to treat elderly patients?

# **Causes of pain in Hip OA**

## Intra-articular

# **Extra-articular**

- Labrum
- Cartilage
- Subchondral Bone
- Lose bodies



## Hip Joint capsular ligaments 3 main ligaments:



**Right hip** 

Joint capsule is richly supplied by <u>Telleria J 2013</u> somatic and autonomic nervous fibers <u>Clinical Anatomy</u>

# What's the role of the capsule ?

In patients in whom movement is almost lost and deformity is predominat, the capsule surrounding the neck is *like a 'tight collar'* 





# **Contracted capsule**





Progressive fibrosis of both the synovial membrane and the capsule

- The capsule is thickened and shortened and lacks its normal pliability
- Sometimes fibrosis spreads to the adjacent muscles, especially the shorts rotators, so that these adhere to the outer surface of the capsule *Lloyd-Roberts JBJS 1953*

Progressive loss of movement and increase of Pain

Causing

#### **CA.S.L.I. = Capsular-Stretching – Lavage - Injection**

# Capsular Stretching



# Our combined approach



### **Joint Lavage**



# Injections

#### **CA.S.L.I. = Capsular-Stretching + Lavage + Injection**



Patient in mild sedation is placed on fracture table: first of all we do 10 cycles of traction under fluoroscopic control to see a satisfying Capsular stretch

#### Cerulli in press 2015



### **Joint lavage: saline solution**



Anatomical landmarks





The procedure is X-ray guided

# **Joint injections**





#### Corticosteroid + Hyaluronic acid injection

## **Preliminary results**

Since 2014, to date we have used this procedure in 18 patients (range 78-89 yrs ) with primary Hip OA We reached good results at 12 months follow-up in terms of :

- < Pain (VAS decreased from 8 before to 4 after CASLI)</li>
- < NSADs used every day for pain control</li>
- > Function (R.O.M.)

**Conclusion Deformed bone Fibrotic muscle Contracted capsule** 



"Hip replacement? He was never hip to begin with."

All play a part in Hip OA

CA.S.L.I. can be a successful strategy in elderly

#### Thanck you for your kind attention





#### Arthroscopic Treatment of Femoroacetabular Impingement following Slipped Capital Femoral Epiphysis

#### SZ Basheer, AP Cooper, B Balakumar, R Maheshwari, SS Madan

Centre for Hip Join Preservation Sheffield Children's Hospital, Western Bank, Sheffield

Doncaster Royal Infirmary, Armthorpe Road, Doncaster



## Declaration

• None of the contributing authors have any conflicts of interest to declare

# Background

- Complex deformity of proximal femur
- May lead to symptomatic femoroacetabular impingement (FAI)
  - Cam
  - Mixed associated with acetabular retroversion
- Severity correlates with radiologic evidence of OA (Boyer, JBJS Am 1981)



### Methods

- Prospective data collection
  - Pts undergoing hip arthroscopy for sequelae of SCFE
  - March 2007 Feb 2013
- Two sites:
  - Sheffield Children's Hospital (<18 years)</li>
  - □ Doncaster Royal Infirmary (≥18 years)
  - Single surgeon
- Data analysed
  - MS Excel, SPSS

## Patient assessment

- Clinical
- Radiological
  - Plain radiographs
    - Initial slip severity (Southwick)
    - $\hfill \label{eq:pressure}$   $\hfill \label{eq:pressure}$  Pre and post op  $\alpha\mbox{-angle}$  and head-neck offset ratio
  - $CT \pm MRa$
- Patient-reported outcome measures pre- and postoperatively
  - Modified Harris Hip score (MHHS)
  - Non-arthritic Hip Score (NAHS)

# Surgical technique









## Demographics

- 18 patients (19 scopes, F:M = 1:1)
- Age range: 13-42 years (median 16 y)
- **Slip angle 19 65**° (median = 40.5°)
- Follow up: 23 56 months (median = 24 m)



## Indications

| Diagnosis   | Ν  |
|-------------|----|
| FAI         | 18 |
| Cam         | 9  |
| Mixed       | 9  |
| AVN         | 1  |
| LABRAL TEAR | 5  |



## Procedures performed

| Procedure                     | N = 19 scopes |
|-------------------------------|---------------|
| Femoral head-neck osteoplasty | 18            |
| Acetabular recession          | 9             |
| Labral repair                 | 2             |
| Chondrolabral debridement     | 10            |
| Microfracture                 | 4             |



\_









### Clinical findings - pain & impingement

- All patients reported improvement in pain

  10/18 pts (56%) complete resolution of pain
  6 pts occasional mild pain on strenuous activity
  2 pts residual pain on ADLS

  14/18 pts (78%) negative post-op impingement
- tests
## Clinical findings - ROM

|          | Flexion      | Int rotation | Ext rotation | ER<br>deformity |
|----------|--------------|--------------|--------------|-----------------|
| Baseline | 80 (50-90)   | 0            | 82.5 (50-90) | 10 (0-30)       |
| Post-op  | 110 (90-125) | 10 (0-20)    | 80 (30-90)   | -               |
| p value  | <0.0001      | 0.0002       | 0.06         | -               |

## Deformity

| Initial slip severity | Number |
|-----------------------|--------|
| Mild (<30°)           | 7      |
| Moderate (30-50°)     | 6      |
| Severe (>50°)         | 5      |

|                        | Baseline | Postoperative | p value |
|------------------------|----------|---------------|---------|
| $\alpha$ angle         | 91.61    | 51.73         | 0.0001  |
| Head-neck offset ratio | -0.015   | 0.113         | <0.0001 |

#### Outcome measures

• MHHS

| <b>Baseline (mean±SD)</b> | Post-op (mean±SD) | Improvement (p)     |
|---------------------------|-------------------|---------------------|
| 56.2 (±22.37)             | 75.06 (±21.05)    | 18.86 <b>(0.01)</b> |

• NAHS

| <b>Baseline (mean±SD)</b> | Post-op (mean±SD) | Improvement (p)     |
|---------------------------|-------------------|---------------------|
| 52.07 (±21.83)            | 72.03 (±27.32)    | 19.96 <b>(0.02)</b> |

#### Time from SCFE vs outcome scores





|                    | <b>B-coefficient (slope)</b> | R <sup>2</sup> | р    |
|--------------------|------------------------------|----------------|------|
| Baseline MHHS      | -1.37                        | 0.21           | 0.05 |
| Postoperative MHHS | -1.68                        | 0.35           | 0.01 |
| Baseline NAHS      | -1.47                        | 0.25           | 0.03 |
| Postoperative NAHS | -1.97                        | 0.28           | 0.02 |

## Complications

- No nerve injury, fracture, thrombosis/embolism
- One patient required repeat arthroscopy within 24 months

#### Limitations

- Low numbers
  - Difficult to control for heterogeneity
- Relatively short FU (23-56 months)
- Single surgeon series
  - Includes learning curve

## Discussion

- SCFE → Cam FAI → damage to labrum & cartilage
  - Begins shortly after slip (Leunig et al, CORR 2010)
- Damage progression over time → ?OA



## Conclusion

- Arthroscopic osteoplasty improved pain, function and ROM
- Further studies with long term FU are needed
- Symptomatic FAI following SCFE should be treated promptly
  - Prevent progression to irreversible chondrolabral degeneration



#### In Press in BJJ Jan 2016

• Thank you



# Hip arthroscopy in Femoro Acetabular Impingement (FAI): Chondral Damage is a good predictor of outcome

**R. Tansey - Clinical & Research Fellow UCLH** *T. Fayad, S. Konan and F.S. Haddad* 



#### Disclosures

#### One author receives royalties from:

Smith & Nephew Corin MatOrtho

#### Institutional research support from:

Smith & Nephew Stryker Corin MatOrtho

University College London Hospitals

**NHS Foundation Trust** 



- Background
- Aim
- Method
- Results
- Conclusion

### Background



#### **Intraoperative assessment**

#### UCH grading system



Right



Left





**Zone** 1–6









### Grades 1,3 & 4 further grouped

- A <1/3 distance from acetabular rim</p>
- B 1/3 to 2/3 distance from acetabular rim
- C >2/3 distance from acetabular rim



### Aim

- Prospectively review outcomes of arthroscopy for FAI
  - Patient Satisfaction
  - Quality of Life, Activity and Hip Scores
  - Complications
  - Re-operations

### Methods

- 196 Patients
- 104M : 82F
- Age 32 (Range 27-46 years)
- Minimum 3 years data (36-64 months)
- UCH Classification
  - JBJS-B March 2011
- Independent review of outcomes

### Methods

- Inclusion criteria
  - Symptomatic patients with CAM type FAI
  - 'Pistol-grip' deformity on plain (AP) radiograph of the pelvis
  - Or reduced anterior head-neck offset on lateral view
  - Proven over coverage on CT / MRI



### Methods

- Exclusion criteria
  - Dysplasia
  - Osteoarthritis ≥ grade 2 (Tonnis classification)



#### Results

#### Intra-operative findings

- CAM lesion
  - Mean 3.2 cm<sup>2</sup> (1.8 7.2cm<sup>2</sup>)



- Partial resection / stabilisation 68
- Repair when pincer recessed in 36
- Chondral damage
  - Grade 2 or above in 86
  - >2cm (grade 3 B,C) of full thickness loss in 16



#### Results

- Improved Range of movement in 157
- Hip impingement signs decreased
  - Time to symptom plateau over 6 months

- > High patient satisfaction
- 149 would have the procedure again / consider other side if symptomatic

## Results - NAHS 3 years



## Results - NAHS 5 years



#### **Results - UCLA score**

- ➤ UCLA
  - 3.6 (2-7) to 7.9 (2-10)
    P < 0.01</li>
- Majority return to sport
   many in spite of minor residual symptoms

## Results - UCLA score 5 years



#### Results

- Complications
- No deep infections
- No DVT/PE
- > LFCN symptoms 41
- Permanent 5
- Perineal numbness 16All resolved

#### Results

- > 22 equivocal/mild deterioration on all fronts
  - No correlation with age, symptom longevity, or size of CAM lesion
  - No correlation with labral preservation
  - All had full thickness chondral defects
- 6 deteriorated significantly
   O Hip Arthroplasty

#### Conclusion

- Hip arthroscopy is beneficial for FAI
- Chondral damage is a poor prognostic indicator

# References

- Ilizaliturri VM Jr, Byrd JW, Sampson TG, et al. A geographic zone method to describe intra-articular pathology in hip arthroscopy: cadaveric study and preliminary report. Arthroscopy 2008;24:534-9.
- Konan S, Rayan F, Meermans G, Witt J, Haddad FS. Validation of the classification system for acetabular chondral lesions identified at arthroscopy in patients with femoroacetabular impingement. J Bone Joint Surg Br. 2011 Mar;93(3):332-6.
- MacFarlane RJ, Konan S, El-Huseinny M, Haddad F.S.A review of outcomes of the surgical management of femoroacetabular impingement. Ann R Coll Surg Engl. 2014 Jul;96(5):331-8.

# Thank you





Università degli Studi di Udine Clinica Ortopedica e Traumatologica Direttore: Prof. A. Causero



Extracapsular vs standard approach in hip arthroscopy: our experience

> Scorianz M., Di Benedetto P., Fiocchi A., Di Benedetto E., Causero A.



Università degli Studi di Udine - Clinica Ortopedica e Traumatologica

#### **METHODS**

#### April 2010 – March 2012

55 patients treated for FAI



Mean Age 35,8 yrs (range 18-52)

Mean follow-up 18 months (range 10 – 26)



Università degli Studi di Udine - Clinica Ortopedica e Traumatologica
# **METHODS**



- Harris Hip Score: 62 (range 44-78)
- Hip flexion: 97° (range 78° -114)
- Positive impingement sings (FADDIR e FABER test)





# METHODS

X-ray





### MR / Arthro-MR







### Extracapsular

30 patients (54%)

Average surgery duration 108 minutes

### Intracapsular

25 patients (46%) Average surgery duration 147 minutes





### Extra capsular





### Extra capsular





### Extra capsular





- Harris Hip Score: 91 (range 84-98)
- Flexion: 125° (range 110° -135°)
- Impingement signs: negative
- Any significant difference between the two groups
- Any micro instability or laxity in the two groups











### 49 patients: no complications



### 49 patients: no complications

5 iatrogenic lesions: 3 cartilage lesions, 2 labral lesions





### 49 patients: no complications

5 iatrogenic lesions: 3 cartilage lesions, 2 labral lesions

1 patient: transitory neurapraxia of sciatic nerve (10 days)











### Extra capsular

Average traction time 16 minutes

### Intracapsular

Average traction time 98 minutes





| Authors (date)          | Number of hips | Total complications (%) <sup>a</sup> | Ectopic ossification (%) | Femoral neck fracture | Neurologic complications Perineal skin<br>complications (% |
|-------------------------|----------------|--------------------------------------|--------------------------|-----------------------|------------------------------------------------------------|
| Byrd and Jones [29]     | 207            | 3 (1.4)                              | 1 (0.5%)                 | 0                     | 2 (1%) 1 lateral femoral 0<br>cutaneous, 1 pudendal        |
| Gédouin et al. [34]     | 38             | 0                                    |                          |                       |                                                            |
| Horisberger et al. [30] | 105            | 12 (11)                              | 0                        | 0                     | 9 (8%) lateral femoral 1 (0.9)<br>cutaneous and pudendal   |
| lizalituri et al. [26]  | 19             | 0                                    |                          |                       |                                                            |
| arson and Giveans [27]  | 100            | 7 (7)                                | 6 (6%)                   |                       | 1 (1%) (sciatic)                                           |
| hilippon et al. [28]    | 122            | 0                                    |                          |                       |                                                            |
| adri [25]               | 32             | 1 (3)                                |                          | 1                     | 1 (3%) lateral femoral<br>cutaneous                        |
| ampson [23]             | 120            | 1 (0.8)                              |                          | 1 (0.8%)              |                                                            |
| resent series           | 110            | 7 (6)                                | 3 (2%)                   | 1 (0.9%)              | 2 (1.8%) (1 femoral <sup>b</sup> , 1 1 (0.9)<br>pudendal)  |

<sup>b</sup> Following crossover to open surgery.



Sampson, Clin.Sport. Med. 2001

Gedouin JE – Orthop Traum Surg Res 2010



# CONCLUSIONS



Università degli Studi di Udine Clinica Ortopedica e Traumatologica Direttore: Prof. A. Causero

# Thank you for your attention





Hip Arthroscopy – a new vision about the Hip Pathology 3 years experience with the out-inside technique



Orthopaedics and Traumatology Service of Hospital Garcia de Orta, Almada Hip Arthroplasties and Arthroscopy Unit



Clínica Lambert, Lisboa Hip Pathology Unit



João Sarmento Esteves<sup>1</sup>, Pedro Simas<sup>2</sup>, José Pinto<sup>1</sup>, Ricardo Ferreira<sup>1</sup>, David Pinto<sup>1</sup>, Mário Tapadinhas<sup>3</sup>

Registrar<sup>1</sup> of Orthopaedics and Traumatology Service of Hospital Garcia de Orta Medical doctor<sup>2</sup> of Clinica Lambert: Orthopaedics, Traumatology and Sports Medicine Medical doctor<sup>3</sup> of Orthopaedics and Traumatology Service of Hospital Garcia de Orta





# **Combined Meeting**

# Review the clinical, functional and radiographic shortterm results of patients with hip disease that underwent hip arthroscopy

# METHODS



- Retrospective review of 3 years (May 2011 to May 2014)
- Number of patients: 36 cases
  - Exclusion criteria:
    - other surgeons
    - loss of follow-up
    - adjuvant technique for treating other hip pathologies

# METHODS



- 36 patients (18M & 18F)
- 28 FAI

0

- 7 Snapping hip
- 1 Chronic trocanteritis
- Average age **41Y** (16-62Y)
- Average Follow-up 7.81M (1-18M)
  - Clinical and radiologic evaluation
  - Tönnis and Ganz classification
- Modified HHS and modified Merle d'Aubigne score

 $\bullet$ 

 $\bullet$ 



































### **Hip Pathology**





### **Technique type**





### **Tönnis classification**









### **Modified Merle d'Aubigne Score**

| Modified Merle d'Aubigne Scale                |               |                                       |
|-----------------------------------------------|---------------|---------------------------------------|
| Criteria                                      | Points        |                                       |
| Pain                                          |               | 89% FAI with good – excellent results |
| None                                          |               |                                       |
| Slight or intermittent                        | 5             |                                       |
| After walking but resolves                    | 4             |                                       |
| Moderately severe but patient is able to walk | 3             |                                       |
| Severe, prevents walking                      | 2             |                                       |
| Walking                                       |               | 1000/ SU with good availant           |
| Normal                                        |               | 100% SH with good – excellent         |
| No cane but slight limp                       |               | regulto                               |
| Long distance with cane or crutch             |               | results                               |
| Limited even with support                     | 3             |                                       |
| Very limited                                  | 2             |                                       |
| Unable to walk                                | 1             |                                       |
| Range of motion                               |               |                                       |
| 95-100%                                       | 6             |                                       |
| 80-94%                                        | 5             |                                       |
| 70-79%                                        | 4             |                                       |
| 60-69%                                        | 3             |                                       |
| 50-59%                                        | 2             |                                       |
| <50%                                          | 1             |                                       |
| Clinical grade                                |               |                                       |
| Excellent                                     | 18            |                                       |
| Good                                          | 15, 16, or 17 |                                       |
| Fair                                          | 13 to 14      |                                       |
| Poor                                          | <13           |                                       |
| rom: Matta JM. JBJS 1996;78A:1632             |               |                                       |
| rom: Matta JM, JBJS 1996;78A:1632             |               |                                       |



### **Modified Harris Hip Score**

|                   | JR                                                                                                                                |                                            |    |                       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----|-----------------------|
|                   | Não tem, ou é ignorada                                                                                                            |                                            | 44 |                       |
|                   | Discreta, ocasional (sem comprometer a actividade física)<br>Ligeira (não compromete actividade física normal, só a mais intensa) |                                            |    |                       |
|                   |                                                                                                                                   |                                            |    |                       |
|                   | Moderada, tolerável (mas com limita                                                                                               | ção clara da actividade)                   | 20 | 00% FAI WITH 0000 - 6 |
|                   | Marcada (limitação séria da actividad                                                                                             | de física)                                 | 10 |                       |
|                   | Incapacitante (dor em repouso, imobilizado na cama)                                                                               |                                            |    |                       |
|                   |                                                                                                                                   | TOTAL DOR                                  |    |                       |
| FU                | JNÇÃ0                                                                                                                             |                                            |    |                       |
|                   | Claudicação                                                                                                                       | Não tem                                    | 11 |                       |
|                   |                                                                                                                                   | Ligeira                                    | 8  |                       |
|                   |                                                                                                                                   | Moderada                                   | 5  |                       |
|                   |                                                                                                                                   | Severa ou com Incapacidade de marcha       | 0  |                       |
|                   | Auxiliares de marcha                                                                                                              | Nenhum                                     | 11 |                       |
|                   |                                                                                                                                   | 1 Bengala em caminhadas longas             | 7  |                       |
| $\leq$            |                                                                                                                                   | 1 Bengala a maior parte do tempo           | 5  | 100% SH with acc      |
| 3                 |                                                                                                                                   | 1 Canadiana                                | 3  |                       |
| 3                 |                                                                                                                                   | 2 Bengalas                                 | 2  |                       |
| -                 |                                                                                                                                   | 2 Canadianas ou Incapacidade de marcha     | 0  |                       |
|                   | Perímetro de marcha                                                                                                               | llimitado                                  | 11 | resuits               |
|                   |                                                                                                                                   | 1000 metros                                | 8  | ioouite               |
|                   |                                                                                                                                   | 250-500 metros                             | 5  |                       |
|                   |                                                                                                                                   | Deambula só em casa                        | 2  |                       |
|                   |                                                                                                                                   | Só Cama e Cadeira                          | 0  |                       |
|                   | Escadas                                                                                                                           | Normalmente, sem corrimão                  | 4  |                       |
|                   |                                                                                                                                   | Normalmente, mas apoiado no corrimão       | 2  |                       |
| A                 |                                                                                                                                   | Com grande dificuldade                     | 1  |                       |
| ctividade Funcior |                                                                                                                                   | Incapaz de usar escadas                    | 0  |                       |
|                   | Atar os sapatos / Calçar Meias                                                                                                    | Facilmente                                 | 4  |                       |
|                   |                                                                                                                                   | Com dificuldade                            | 2  |                       |
|                   |                                                                                                                                   | Incapaz                                    | 0  |                       |
|                   | Sentar-se                                                                                                                         | Em cadeira normal (1 hora ou mais)         | 5  |                       |
|                   |                                                                                                                                   | Cadeira alta (até 1/2 hora)                | 3  |                       |
|                   |                                                                                                                                   | Incapaz de sentar-se em cadeira (1/2 hora) | 0  |                       |
| a                 | Transportes públicos (autocarro)                                                                                                  | Pode utilizador                            | 1  |                       |
|                   |                                                                                                                                   | Não Consegue utilizar                      | 0  |                       |
| 4                 |                                                                                                                                   | TOTAL FUNCÃO                               | 1  |                       |

|                                  | TOTAL FUNCADI         |   |  |  |
|----------------------------------|-----------------------|---|--|--|
|                                  | Não Consegue utilizar |   |  |  |
| Transportes públicos (autocarro) |                       | 1 |  |  |
|                                  |                       |   |  |  |
|                                  |                       |   |  |  |
|                                  |                       |   |  |  |
|                                  |                       |   |  |  |
|                                  |                       |   |  |  |
|                                  |                       |   |  |  |
|                                  |                       |   |  |  |
|                                  |                       |   |  |  |

xcellent results

# - excellent

# **POST OP PROTOCOL**



- Partial weight bearing with crutches 2weeks
- Flexion <80° 4weeks
- Rivaroxaban 2weeks
- Celecoxib 2weeks
- Early mobilization!!!
  - •Artromotor
  - •Assisted passive and active exercises
  - •Weighing commuters



# COMPLAINTS



### **Post-op complaints**





### THR

### 2 cases (7.14%)

### Lesion progression to coxarthrosis

(Tönnis 2 e 3)

Without "instability" cases Without vasculo-nervous injuries
#### CONCLUSIONS



- Small and with short follow-up series
- Missing pre-op scores to compare the real improvement
- Hip joint easy to access this way
- Inside-out technique easy to implement
- Low complications rate associated with traction
- Demystify the development of hip arthroscopy

# THANK YOU







#### SURGICAL DISLOCATION FOR PEDIATRIC AND ADOLESCENT HIP DEFORMITY: CLINICAL AND RADIOGRAPHIC RESULTS AT 3 YEARS FU

Guindani N<sup>1</sup>, Eberhardt O<sup>1</sup>, Surace MF<sup>2</sup>, Cherubino P<sup>2</sup>, Wirth T<sup>1</sup>, Fernandez FF<sup>1</sup>

1.Orthopädische Klinik – Olgahospital - Klinikum Stuttgart (DE)

2. Dipartimento Di Biotecnologie e Scienze Della Vita, University of Insubria, Varese (IT).

SIOT Grant - 2013/2014







Clin Orthop Relat Res (2009) 467:704-716 DOI 10 1007/s11999.008.0687.4

SYMPOSIUM: FEMOROACETABULAR IMPINGEMENT: CURRENT STATUS OF DIAGNOSIS AND TREATMENT

Capital Realignment for Moderate and Severe SCFE Using a Modified Dunn Procedure

Kai Ziebarth MD, Christoph Zilkens MD, Samantha Spencer MD, Michael Leunig MD, Reinhold Ganz MD, Young-Jo Kim MD, PhD

Clin Orthop Relat Res (2009) 467:724-731 DOI 10.1007/s11999-008-0591-v

SYMPOSIUM: FEMORACETABULAR IMPINGEMENT: CURRENT STATUS OF DIAGNOSIS AND TREATMENT

Surgical Dislocation in the Management of Pediatric and Adolescent Hip Deformity

Gleeson Rebello MD, Samantha Spencer MD, Michael B. Millis MD, Young-Jo Kim MD, PhD

HSSJ (2013) 9:60–69 DOI 10.1007/s11420-012-9323-7

**REVIEW ARTICLE** 

Surgical Dislocation of the Hip: Evolving Indications

James R. Ross, MD · Perry L. Schoenecker, MD · John C. Clohisy, MD

#### Surgical dislocation of the adult hip

A TECHNIQUE WITH FULL ACCESS TO THE FEMORAL HEAD AND ACETABULUM WITHOUT THE RISK OF AVASCULAR NECROSIS

R. Ganz, T. J. Gill, E. Gautier, K. Ganz, N. Krügel, U. Berlemann From the University of Bern, Switzerland

#### Original Article Clinics in Orthopedic Surgery 2009;1:132-137 • doi:10.4

HOSPITAL FOR SPECIAL SURGERY

#### Application of Ganz Surgical Hip Dislocation Approach in Pediatric Hip Diseases

Sung Jin Shin, MD\*, Hong-Seok Kwak, MD, Tae-Joon Cho, MD, Moon Seok Park, MD, Won Joon Yoo, MD, Chin Youb Chung, MD, In Ho Choi, MD

> Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, \*Department of Orthopaedic Surgery, Jeju National University College of Medicine, Jeju, Korea

#### ORIGINAL ARTICLE

#### Surgical Hip Dislocation for Removal of Intraarticular Exostoses

Report of Two Cases

Paul Jellicoe, FRCS,\* Jochen Son-Hing, MD, FRCS(C),† Sevan Hopyan, MD,\* and George H. Thompson, MD†‡

















#### Surgical dislocation of the adult hip

A TECHNIQUE WITH FULL ACCESS TO THE FEMORAL HEAD AND ACETABULUM WITHOUT THE RISK OF AVASCULAR NECROSIS

R. Ganz, T. J. Gill, E. Gautier, K. Ganz, N. Krügel, U. Berlemann From the University of Bern, Switzerland

Clin Orthop Relat Res (2009) 467:704-716 DOI 10.1007/s11999-008-0687-4

SYMPOSIUM: FEMOROACETABULAR IMPINGEMENT: CURRENT STATUS OF DIAGNOSIS AND TREATMENT

Capital Realignment for Moderate and Severe SCFE Using a Modified Dunn Procedure

Kai Ziebarth MD, Christoph Zilkens MD, Samantha Spencer MD, Michael Leunig MD, Reinhold Ganz MD, Young-Jo Kim MD, PhD







### Anatomy of the medial femoral circumflex artery and its surgical implications

Emanuel Gautier, Katharine Ganz, Nathalie Krügel, Thomas Gill, Reinhold Ganz *From L'Hôpital Cantonal, Fribourg, Switzerland* 





Deep branch of A. circumflexa femoris medialis





#### MODIFIED DUNN SUBCAPITATE OSTEOTOMY



Clin Orthop Relat Res (2009) 467:704-716 DOI 10.1007/s11999-008-0687-4

SYMPOSIUM: FEMOROACETABULAR IMPINGEMENT: CURRENT STATUS OF DIAGNOSIS AND TREATMENT

Capital Realignment for Moderate and Severe SCFE Using a Modified Dunn Procedure

Kai Ziebarth MD, Christoph Zilkens MD, Samantha Spencer MD, Michael Leunig MD, Reinhold Ganz MD, Young-Jo Kim MD, PhD











Osteochondral mosaicplasty of the femoral head. Girard J, Roumazeille T, Sakr M, Migaud H. Hip Int. 2011 Sep-Oct;21(5):542-8. doi: 10.5301/HIP.2011.8659.



ASSOCIATED PELVIC / FEMUR OSTEOTOMY







# MATERIALS AND METHODS



✓ Retrospective clinical study
 ✓ All SHD < 18 Y from 2008 to</li>
 ✓ Clinical Evaluation:

- ROM, Trendelemburg sign
- Personal satisfaction, SF-12
- mHHS and NAHS

✓ Rö Evaluation:

- Pelvis AP + Lauenstein (pre+
- OA: Tönnis
- Stulberg
- SDS\*
- α-angle, Reimer index, Sharp, CE(Wiberg), ACM, C







Copyright  $\oplus$  2013 by The Journal of Bone and Joint Surgery, Incorporated

Quantitative Measures for Evaluating the Radiographic Outcome of Legg-Calvé-Perthes Disease

Hitesh Shah, MS(Orth), N.D. Siddesh, MS(Orth), Harish Pai, MS(Orth), Stéphane Tercier, Mi and Benjamin Joseph, MS(Orth), MCh(Orth)

> tigation performed at the Paediatric Orthopaedic Service, Department of Orthopaedic Kasturba Medical College, Manipal, Karnataka State, India



#### **TREATED PATHOLOGY**



| PATHOLOGY             | PREV   | ALENCE            |                                                              |
|-----------------------|--------|-------------------|--------------------------------------------------------------|
| ✓ FAI*                | 2÷3    | x10               | 34 x10 <sup>-2</sup> Pediatric<br>Orthopedics<br>in Practice |
| ✓ LCPD                | 4      | x10 <sup>-5</sup> | 28 x10 <sup>-2</sup>                                         |
| ✓ ECF                 | 2      | x10 <sup>-5</sup> | 24 x10 <sup>-2</sup>                                         |
| ✓ MHE                 | 5      | x10 <sup>-4</sup> | 8 x10 <sup>-2</sup>                                          |
| ✓ SEPT.ART. (St.Aft.) | 3÷8    | x10 <sup>-5</sup> | 2 x10 <sup>-2</sup>                                          |
| ✓ PVNS (Intrartic.)   | 2      | x10 <sup>-6</sup> | 2 x10 <sup>-2</sup>                                          |
| ✓ SYN.CHONDR.         | Rare - | unknown           | 2 x10 <sup>-2</sup> Medscap                                  |
| ✓ []                  | * * *  |                   | * * *                                                        |

\* FAI  $\equiv \alpha > 55$  V LCEA ORIGINAL ARTICLE

Prevalence of Femoroacetabular Impingement Morphology in Asymptomatic Adolescents



### **TREATED PATHOLOGY**



#### PATHOLOGY

✓ FAI\*

✓ LCPD

✓ ECF

- ✓ MHE
- ✓ SEPT.ART. (St.Aft.)
- ✓ PVNS (Intrartic.)
- ✓ SYN.CHONDR.
- **√**[...]



# THIS STUD Heft 34 x10<sup>-2</sup> Pediatric Orthopedics in Practice 28 x10<sup>-2</sup> • were 24 x10<sup>-2</sup> • were 24 x10<sup>-2</sup> • were 2 x10<sup>-2</sup> • were









| <b>CHARACTERISTICS</b>                           | DATA ± SD (RANGE) or<br>[%]      |
|--------------------------------------------------|----------------------------------|
| Nr. of patients<br>Nr. of hips<br>Female<br>Male | 51<br>53<br>22 [43%]<br>29 [57%] |
| Follow – up [Years]                              | 3 ± 1,3 (0,5 - 6)                |
| Mean age at surgery [Years]                      | 14,2 ± 2,3 (8-18)                |
| Mean age at follow-up [Years]                    | 17,4 ± 2,5 (11 - 23)             |
| Drop off [%]                                     | 8 [14%]                          |





#### **PROCEDURES**

| Femoral head-neck junction osteoplasty/bump | 34     |
|---------------------------------------------|--------|
| resection                                   | [66%]  |
| Femoral neck osteotomy (Dunn)               | 10     |
| Labrum repair                               | [18%]  |
| Extracapsular femur osteotomy               | 5 [9%] |
| Pelvic Ost/Acetabuloplasty (Tönnis or       | 4 [8%] |
| Pemberton)                                  | 3 [6%] |
| Femoral head mosaicplasty (for MLCP)        | 2 [4%] |
| Cartilage lesions / flakes fixation         | 2 [4%] |
| Synoviectomy                                | 2 [4%] |
| Femoral neck osteotomy                      | 1 [2%] |
| ORIF of SCFE (acute on chronic)             | 1 [2%] |



# **LIMITS & STRENGHT**





- Variety of treated
- pathologies
- ✓ Limited number of patients
- ✓ Drop off 14%
- Limited FU with growing skeleton
- No further imaging analysis (MR...)



- ✓ Compare results of different pathologies
- ✓ Same technique & same surgeons for SHD
- Overall good sample for comparison with other studies





- $\checkmark$  No difference of ROM
- ✓ Improvement of NAHS, mHHS and SF-12
- ✓ Better roundness (↓SDS), without association of SDS with outcome scores

| 90% personal |             |         | (± SD)          | Y/N)<br>MEAN DIFFERECE |      |
|--------------|-------------|---------|-----------------|------------------------|------|
| OUTCOM       | OUTCOME     |         | PREOPERATIVE FU |                        | р    |
|              |             |         |                 |                        |      |
|              | IR          | 15 (21) | 16 (15)         | 1,4 (-8,4 to 5,5)      | 0,68 |
|              | FL          | 93 (32) | 100 (24)        | 5,4 (-14,4 to 3,6)     | 0,23 |
| ROM[°]       | ER          | 29 (27) | 28 (17)         | 2,3 (-6,1 to 10,7)     | 0,59 |
|              | ES          | 2 (7)   | 1 (8)           | 1,1 (-4,5 to 2,3)      | 0,52 |
|              | AB          | 28 (16) | 27 (15)         | 1,3 (-6,3 to 8,8)      | 0,73 |
| NAHS         |             | 73(13)  | 86 (16)         | 12,4 (-17,1 to -7,6)   | 0,00 |
| mHHS         |             | 73 (20) | 92 (6,3)        | 18,8 (-27,1 to -10,4)  | 0,00 |
| SF-12        |             | 47 (3)  | 50 (1,6)        | 2,4 (-3,2 to -1,6)     | 0,00 |
| SDS          | All         | 31 (26) | 25 (22)         | 6,3 (-1,5 to 14,1)     | 0,12 |
|              | If Stulb.≥2 | 34 (26) | 24 (23)         | 9,7 (1,7 to 17,6)      | 0,02 |





- ✓ 9% ON progression
- ✓ ↑ ON progression with MDO (p = 0,018, OR = 8,9 with  $Cl_{95\%}$  from 1,2 to 71,2)
- ✓ ↔ OA pre Vs postop (pre 15% Vs post 29%, p=0,062)
   ✓ 6% THA\*
- $\checkmark \downarrow$  prevalence of OA with preop Stulberg class 1.
- $\checkmark$  No association between OA and outcome scores or SDS

| COMPLICATION or                     | DIAGNOSIS      |      |     |     |             |  |  |
|-------------------------------------|----------------|------|-----|-----|-------------|--|--|
| FURTHER PROCEDURES                  | SCFE           | LCPD | FAI | MHE | Miscellanea |  |  |
|                                     |                |      |     |     |             |  |  |
| $\frown$                            |                |      |     |     |             |  |  |
| (THA)                               | 1ª             | 2    | -   | -   | 1º          |  |  |
| ASK and shaving                     | -              | -    | 1   | -   | -           |  |  |
| Partial implant removal             | 1              | -    | -   | -   | -           |  |  |
| Fixation failure                    | 1              | -    | -   | -   | -           |  |  |
| Heterotopic calcifications removal  | -              | 1    | -   | -   | -           |  |  |
| IDVO                                | 1 <sup>d</sup> | 1    | -   | 1ª  |             |  |  |
| РОТ                                 | -              | -    | 1ª  | 1ª  | -           |  |  |
| Mobilization under anesthesia       | -              | 1    | -   | -   | -           |  |  |
| (ON progression)                    | 3c             | -    | -   | -   | -           |  |  |
| Transient ischiatic nerve paralysis | -              | 1    | -   | 1   | -           |  |  |
| Functional arthrodesis              | -              | 1    | -   | -   | -           |  |  |
| Perioperative blood transfusion     | -              | -    | -   | 1   | -           |  |  |
| Postoperative fever                 | -              | 1    | -   | -   | -           |  |  |
| SSI                                 | -              | 1    | -   | -   | -           |  |  |
|                                     |                |      |     |     |             |  |  |





- ✓ 9% ON progression
- ✓ ↑ ON progression with MDO (p = 0.018, OR = 8.9 with Cl<sub>95%</sub> from 1.2 to 71.2)
- ✓ ↔ OA pre Vs postop (pre 15% Vs post 29%, p=0,062)
   ✓ 6% THA\*
- $\checkmark \downarrow$  prevalence of OA with preop Stulberg class 1.

**No association between OA and outcome scores or SDS** 

\* Preop plain radiographs of patients with THA (or scheduled for) at FU







**Results, frequency and quality of the complications :** 

- are similar to those already described by in literature
- vary depending on pathology, complexity and type of the procedure
- Relationship between dauer of pathology, cartilage damage, symptoms and outcomes. The SHD itself can be

| •      |      |         |        |      |
|--------|------|---------|--------|------|
| consid | arad | a sate* | nrocar | IIro |
| CONSIG |      |         |        |      |

|                                     | DIACNOSIS      |      |        |     | Clinical Ortho |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------|----------------|------|--------|-----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COMPLICATION or                     | DIAGNOSIS      |      |        |     |                | Clin Onthop Relat Res (2012) 470:2441–2449 and Related Re<br>DOI 10.1007/s11999-011-2187-1 Protocol of Technology at the control of the control |
| FURTHER PROCEDURES                  | SCFE           | LCPD | FAI    | MHE | Miscellanea    | SYMPOSIUM: LEGG-CALVÉ-PERTHES DISEASE: WHERE DO WE STAND AFTER 100 YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| THA<br>ASK and shaving              | 1 <sup>d</sup> | 2    | -<br>1 | -   | 1 <sup>b</sup> | Low Early Failure Rates Using a Surgical Dislocation Approach<br>in Healed Legg-Calvé-Perthes Disease<br>Benjamin J. Shore MD, FRCSC, Eduardo N. Novais MD,<br>Michael B. Millis MD, Young-Jo Kin MD, PhD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Partial implant removal             | 1              |      | •      | -   | -              | Clin Orthop Relat Res (2009) 467:724-731<br>DOI 10.1007/x11999-008-0591-v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fixation failure                    | 1              | -    | •      | -   | -              | SYMPOSIUM: FEMORACETABULAR IMPINGEMENT: CURRENT STATUS OF DIAGNOSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Heterotopic calcifications removal  | -              | 1    | -      | -   | -              | AND TREATMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IDVO                                | 1 <sup>d</sup> | 1    | -      | 1ª  | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| РОТ                                 | -              | -    | 1ª     | 1ª  | -              | Surgical Dislocation in the Management of Pediatric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mobilization under enesthesia       |                | 1    | -      | -   | -              | and Adolescent Hip Deformity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ON progression                      | 3°             | -    | -      | -   | -              | Gleeson Rebello MD, Samantha Spencer MD,<br>Michael R. Millis MD, Yanne-Jo Kim MD, PhD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Transient ischiatic nerve paralysis |                | 1    | -      | 1   | -              | ODICINAL ADTICLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Functional arthrodesis              |                | 1    |        | -   | -              | SKUINAL ARTICLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Perioperative blood transfusion     | -              | -    |        | 1   | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Postoperative fever                 | -              | 1    |        | -   | -              | Early Results of Treatment for Hip Impingement Syndro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SSI                                 |                | 1    |        |     |                | In Slipped Capital Femoral Epiphysis and Pistol Grip<br>Deformity of the Femoral Head-Neck Junction Using t<br>Surgical Dislocation Technique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     |                |      |        |     |                | Samantha Spencer, MD, Michael B. Millis, MD, and Young-Jo Kim, MD, PhD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



# **SCFE and MDO**



- Cumulative complications: 200/ JO/0,
- ON progression: a THA

23%; from those one patient(7%) needed

#### **Other studies:**

- $\checkmark$  ON:

Cumulative complications: from 10% to 41% at short term FU

- from 0% and 26% ON after MDO
- 24% (range, 0%-58%) after every

treatment of unstable SCFE

#### Indications limited! (>50% slipping angle, experienced & high volume





#### **SCFE and MDO**









Gordon JE<sup>1</sup>.

Young-Jo Kim, MD, PhD, Michael B, Millis, MD, and James R, Kasser, MD



## **SCFE and MDO**











- $\checkmark$  In this study:
  - ✓ Survival rate : 80% (at 3 Y)
  - ✓ Failure: 20% (2 THA + 1 functional a
- ✓ In literature:
  - ✓ survival rate of 86% at five years and 61% at SHD
  - ✓ Negative predictors:
    - ✓ Age (>40 Lj)
    - ✓ OA
    - ✓ Subluxation
    - ✓ Stulberg  $\ge$  3



| Clin Orthop Relat Res (2012) 470:2450-2461<br>DOI 10.1007/s11999-012-2345-0                                                                | Clinical Orthopaedics<br>and Related Research |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| SYMPOSIUM: LEGG-CALVÉ-PERTHES DISEASE: WHERE DO                                                                                            | WE STAND AFTER 100 YEARS?                     |
| Joint-preserving Surgery Improves Pain, Ran<br>and Abductor Strength After Legg-Calvé-Per                                                  | ge of Motion,<br>thes Disease                 |
| Christoph Emanuel Albers MD,<br>Simon Damian Steppacher MD, Reinhold Ganz MD,<br>Klaus Arno Siebenrock MD, Moritz Tannast MD               |                                               |
| Clin Othop Relat Rev (2012) 4702441-2449<br>DOI 10.1007/s11999-011-2187-1                                                                  | Clinical Orthopaedics<br>and Related Research |
| SYMPOSIUM: LEGG-CALVÉ-PERTHES DISEASE: WHERE DO                                                                                            | WE STAND AFTER 100 YEARS?                     |
| Low Early Failure Rates Using a Surgical Dis<br>in Healed Legg-Calvé-Perthes Disease<br>Beniamin J. Shore MD. FR/SC. Eduardo N. Novais MD. | location Approach                             |

✓ DoúbtsAaparougtebsidoongatenwerstopfskownitien, however SHD is a versatile tool to address complexe deformation typical of LCPD.







Clinical Orthopaedi

nd Related Researc

Clinical Orthopaedi

and Related Research

- $\checkmark$  In this study:
  - ✓ Survival rate :
  - ✓ Failure:

80% (at 3 Y) 20% (2 THA + 1 functional a losis )









- ✓ In this study: All outcome scales of patients with FAI were improved at FU, without any major complication.
- ✓ In literature: resolution of symptoms in 68%-92% of patients, rare complications with SHD or arthroscopy.
- ✓ In young patients :
  - The surgical indication for FAI is still debated! Risk of overtreatment!
  - FAI is more often associated with complex or previous pathologies. Attention is needed to address all the problems!



FAI: 'a condition where the bones of the hip are abnormally shaped. Because they do not fit together perfectly, the hip bones rub against each other and cause damage to the joint."

American Academy of Orthopaedic Surgeons. Femoroacetabular impingement









#### The Myths of Femoroacetabular Impingement

| Eur Radiol (2014) 24:1707-1714<br>DOI 10.1007/s00330-014-3171-4                         |
|-----------------------------------------------------------------------------------------|
| MUSCULOSKELETAL                                                                         |
| Femoroacetabular impingement: normal values of the quantitative morphometric parameters |
| in asymptomatic hips                                                                    |
| Marianne Lepage-Saucier · Cécile Thiêry ·                                               |
| Ahmed Larbi · Frédéric E. Lecouvet ·                                                    |
| Bruno C. Vande Berg - Patrick Omoumi                                                    |

FAI: 'a condition where the bones of the hip are abnormally shaped. Because they do not fit together perfectly, the hip bones rub against each other and cause damage to the joint."

American Academy of Orthopaedic Surgeons. Femoroacetabular impingement









#### The Myths of Femoroacetabular Impingement

| Ear Radiol (2014) 24:1707-1714<br>DOI 10.1007h00330-014-3171-4                             |
|--------------------------------------------------------------------------------------------|
| MUSCULOSKELETAL                                                                            |
| Femoroacetabular impingement: normal values<br>of the quantitative morphometric parameters |
| in asymptomatic hips                                                                       |
| Marianne Lepage-Saucier - Cécile Thiéry -                                                  |
| Abmod Larbi - Fridáric F Lacamat -                                                         |

FAI: 'a condition where the bones of the hip are abnormally shaped. Because they do not fit together perfectly, the hip bones rub against each other and cause damage to the joint."

American Academy of Orthopaedic Surgeons. Femoroacetabular impingement



# CONCLUSIONS



- After a 3Y FU the results and complications of SHD in young patients:
  - ✓ are comparable to previous studies and patients have a high rate of satisfaction
  - seem to be related with preoperative lesion(s) and type of treatment
  - ✓ particular risks and benefits of a MDO have to be carefully evaluated for underlying pathology and tailored to each patient, whilst
  - ✓ simple osteoplasty through a SHD seems to be safe and effective
- ✓ The effectiveness of those procedures have to be proved in the long term.







INTERNATIONAL COMBINED MEETING

#### BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA 26-27 NOVEMBER 2015 MILAN, ITALY



Marco Manfrini Laura Campanacci & Davide Donati

MusculoSkeletal Tumor Center Rizzoli Orthopaedic Institute Bologna - Italy



SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Istituto Ortopedico Rizzoli di Bologna Istituto di Ricovero e Cura a Carattere Scientifico







#### 1994-2013 IOR

in the last twenty years 238 children age 1-10 were surgically treated for HG Bone sarcomas

only 20 cases (8,4%) involved the PF



#### 1994-2013 20 cases proximal femur age 1-10







DiagnosisOGS7EFT13

#### All intrarticular resections All perioperative chemotherapy



17 months-old baby girl Ewing's sarcoma localized in the proximal femur after 6 cycles of chemotherapy Protocol AEWS00316










MusculoSkeletal Tumor Center Rizzoli Orthopaedic Institute Bologna - Italy









In 13 cases (median age 6 y/o) PF was reconstructed by an allograft/prosthesis composite (APC). with a stem cemented into the massive bone allograft (MBA), then fixed to the residual femur by a plate





The femoral head was reconstructed by fixed heads in 3 small children (1-4-6 y/o) sized 22mm in one case and 32 mm ceramic in two





#### .....and by bipolar cups (36-44mm) in 12 cases (age 6-10)





In five small children (4-5 y/o) an original reconstructive technique was applied Fibula pro-Hip







#### RESULTS

# The first case of FIBULA PRO HIP reached the complete weigth bearing more than 4ys after surgery





#### .....but it is still working almost 17 years after the implant





4-2014







#### All the other four cases failed..... SECONDARY APC



TWO were then revised in a THR





marco.manfrini@ior.it



Only 2 of the 12 primary bipolar heads were revised with an uncemented acetabular cup , 5 and 17 years after the primary surgery



MusculoSkeletal Tumor Center

#### RESULTS

#### PRIMARY APC/ child (13 cases) No infection, No delayed union, No revision



All children treated by APC/child, recovered walking autonomy in the first postop year





Girl 4 y/o EFT

MusculoSkeletal Tumor Center Rizzoli Orthopaedic Institute Bologna - Italy





#### CONCLUSIONS



Fibula pro-Hip technique represents a fascinating biological solution that however was demonstrated to be effective up to the skeletal maturity only in 20% of the cases.

## APCs adapted for childhood are confirmed as a satisfactory solution to reconstruct children bone stock

Bipolar Cup is a durable and efficient method that may preserve the acetabulum till the end of skeletal growth but it is easily available only over 36 mm of head diameter

Small fixed heads may represent the solution in small children







Istituto di ricovero e cura a carattere scientifico



marco.manfrini@ior.it





Late correction of neck deformity in healed severe SCFE – a reliable option with encouraging midterm clinical outcomes

> Balakumar Balasubramanian Mr Sanjeev Madan

Centre for Hip Joint Preservation Sheffield Children's hospital Doncaster Royal Infirmary United Kingdom

#### SCFE

- Postero-inferior displacement and retroversion
- In-situ pinning current standard
- Femoroacetabular impingement



## **Chronic severe SCFE ?**

## **Chronic SCFE**

- Arthroscopic/open Osteochondroplasty (<30°)</li>
- Intertrochanteric repositioning osteotomy (<70°)</li>
- Meagre data regarding capital realignment for patients with chronic SCFE

• Madan et al BJJ 95-B 2013; 424-9

Anderson LA, Gililland J, Pelt C, Peters CL.Subcapital correction osteotomy for malunited slipped capital femoral epiphysis.*J Pediatr Orthop* 2013;33:345–52.

Bali K, Railton P, Kiefer GN, Powell JN. Subcapital osteotomy of the femoral neck for patients with healed slipped capital femoral epiphysis. *Bone Jt J* 2014;96-B:1441–8.

## Aim

- Subcapital neck osteotomy Vs capital realignment osteotomy for chronic healed SCFE by surgical dislocation approach
- Compare the clinical and radiological outcomes

#### **SCFE Database**

- Retrospective review hip database from 2006 to 2013 (SCH and Doncaster)
- **187** SCFE
- 41 surgical dislocation
- 18 chronic stable SCFE (1 Pre Op AVN)
- 12 closed physis neck osteotomy
- 5 open physis capital realignment

## Inclusion and exclusion criteria

#### Inclusion:

- Severe slip (>70°)
- Minimum 3 yrs of follow-up

#### • Exclusion:

Pre operative AVN / arthritis

#### **Pre-operative Assessment**

- Clinical and radiographic data
- Indication for surgery:
  - Gross restriction of motion
  - Severe external rotation deformity
  - Pain
  - Difficulty in walking
- Radiographic assessment
  - Alpha angle pre and post
  - Slip Angle(SA) AP, lateral and oblique plane pre and post
  - Centro Trochanteric Distance (CTD)

# The oblique plane deformity in slipped capital femoral epiphysis. Cooper AP, Salih S, Geddis C, Foster P, Fernandes JA, <u>Madan SS</u>.



## **Surgical technique**

- Surgical dislocation by Ganz technique
- Extended retinacular flap technique
- Capital realignment (n=5) /Sub capital neck osteotomy (n=12)
- Management of acetabular side lesions
- Reduction and fixation with 6.5mm x2 cancellous screws and 4.5 mm x2 cortical screws for trochanteric flip

Ganz R, Huff TW, Leunig M. Extended retinacular soft-tissue flap for intra-articular hip surgery: surgical technique, indications, and results of application. *Instr Course Lect* 2009;58:241–55.

#### Post operative protocol

- Touch weight bearing for 6 weeks
- Full weight bearing based on radiographs
- Modified Harris Hip Score (MHHS) and Non Arthritic Hip Score (NAHS)

## Results

- 11 boys and 6 girls (2:1)
- Mean age at surgery: 14 yrs (11-20 yrs)
- Prior pinning: 9
- Mean duration between pinning and surgery 14 months (11-24 months)

## **Comparison of groups**

|                         | Neck osteotomy<br>n=12 |         | Capital realignment<br>n=5 |        |
|-------------------------|------------------------|---------|----------------------------|--------|
| Age                     | 14.6 (11-20yrs)        |         | 13.6(12-16yrs)             |        |
| Follow-up               | 4.08 (3-5yrs)          |         | 4.9 (3-6yrs)               |        |
| Prior pinning           | 8                      |         | 1                          |        |
| Alpha angle pre         | 81.6 (62.5 - 99)       |         | 82.26 (69.8-89.9)          | W=0;   |
| $\alpha$ angle post     | 34.65 (23.2 – 45.6)    | p=0.001 | 37.56 (21.6 – 43.9)        | p<0.05 |
| AP SA pre               | 34.1 (3.9–51.6)        | p=0.017 | 37.2° (20.1°-46.9°)        | W =0;  |
| AP SA post              | 10.8 (1-17.9)          |         | 13.3° (6.3°-17.7°)         | p<0.05 |
| Lat SA pre              | 51.4 (32.6-77)         | 2-0.001 | 57.12° (34°-84.9°)         | W =0;  |
| Lat SA post             | 13.5 (1-28.5)          | p=0.001 | 7.4° (4.1°-15.1°).         | p<0.05 |
| SA oblique<br>plane pre | 69.1 (58.6-88.9)       | 0 00288 | 71.7(52-93.7)              | W =0;  |
| SA oblique plane post   | 1.4 (-3.8 to 10)       | 0.00288 | 0.9 (-2 to 2.4)            | p<0.03 |

## **Comparison of groups**

|                   | Neck osteotomy<br>n=12 |          | Capital realignment n=5 |        |
|-------------------|------------------------|----------|-------------------------|--------|
| CTD pre           | -7.7 (-33.6-1.8)       |          | -5.36mm (-11.90.2mm)    | W =0;  |
| CTD post          | -0.5(-20- 20)          | D=0.0139 | 5.76mm (0.2 – 8.4mm)    | p<0.05 |
| MHHS pre          | 23.1 (0-46)            |          | 11 (0-20)               |        |
| NAHS Pre          | 42.3 (17.5 -74)        |          | 40.6 (0-63)             |        |
| MHHS              | 91.4(86.2-100)         |          | 90.9 (88-92.4)          |        |
| NAHS              | 92.1(81.25-100)        |          | 93.1(86.25-98.25)       |        |
| Complicatio<br>ns | Non-union (1)          |          | Chondrolysis (1)        |        |

# Acetabular side findings and interventions

| Acetabular procedure/intervention/findings | Number of cases |
|--------------------------------------------|-----------------|
| Partial labral tear (debridement)          | 1               |
| Cartilage wear out and loss                | 3               |
| Partial labral tear (repair)               | 1               |
| Chondrolabral lesion                       | 1               |

## **Mean Range of motion**

|                   | Neck osteotomy |         | <b>Capital realignment</b> |         |  |
|-------------------|----------------|---------|----------------------------|---------|--|
|                   | (n=12)         |         | <mark>(n=5)</mark>         |         |  |
|                   | Pre op         | Post op | Pre op                     | Post op |  |
| Flexion           | 62             | 120     | 56                         | 120     |  |
| Abduction         | 23             | 45      | 20                         | 50      |  |
| Adduction         | 22             | 30      | 30                         | 30      |  |
| Internal rotation | nil            | 50      | nil                        | 40      |  |
| External rotation | 47 fixed       | 48      | 50 fixed                   | 57      |  |

#### 14 yr M. Chronic SCFE Rt Hip






#### 4 yrs FU





#### 14 yr old G







L

#### 4.5 yrs FU



## **Comparable with the other 2 series**

|                                   | Anderson etal.<br>2013 | Bali et al. 2014 | Current study 2015  |
|-----------------------------------|------------------------|------------------|---------------------|
| Number of hips                    | 12                     | 8                | 12                  |
| Mean age                          | 15 (12-19)             | 17.8 (13-29)     | 4 (11-20)           |
| Gender (M/F)                      | 7/4                    | 6/2              | 6/6                 |
| Prior pinning insitu              | 9                      | 8                | 8                   |
| Time from pinning<br>to osteotomy | 29 (4-73)              | 42 (12-144)      | 14.6(11-16)         |
| Mean follow-up                    | 61 (6-104)             | 41 (20-84)       | 48 (36-60)          |
| AVN                               | 2/12                   | 0/8              | 0/12                |
| Nonunion                          | 1/12                   | 2/8              | 1/12                |
| Alpha pre                         | 85(77.1 to 92.4)       | 64 (50 to 78)    | 81.6 (62.5 - 99)    |
| Alpha post                        | 46 (41.9 to 49.8)      | 32 (25 to 39)    | 34.65 (23.2 – 45.6) |
| HHS                               | 77(64.1 to 89.6)       | 92.5 (85 to 100) | 91.4(86.2-100)      |

# Discussion

- Comparable results both groups
- Better correction of deformity
- Good restoration of form and function
- Technically demanding

# Limitations

- Retrospective
- Smaller group
- Absence of matched controls
- Arbitrary time delay for definitive procedure

# Thank you





««The Turner Scientific Research Institute for Children's Orthopedics»



### **HIP REPLACEMENT IN CHILDREN**

Valentin A. Neverov Alexey G. Baindurashvili Vladimir E. Baskov

Milan – 2015

#### Iatrogenic deformity of the hip joint





# Is there a way out?







From 2009 to 2015 at the hip surgery department of the Turner Institute we performed **214** total hip replacements in **193** patients aged 13 -18 yo, in 21 (10%) – bilateral damage.





| dysplastic pathology –              | 69 pers. | (32%) |
|-------------------------------------|----------|-------|
| avascular necrosis –                | 34 pers. | (16%) |
| infectious process -                | 28 pers. | (13%) |
| spondyloepiphyseal dysplasia –      | 21 pers. | (10%) |
| traumas –                           | 22 pers. | (10%) |
| Perthes disease –                   | 13 pers. | (6%)  |
| slipped capital femoral epiphysis – | 11 pers. | (5%)  |



| infantile cerebral palsy – | 2 pers. | (1%) |
|----------------------------|---------|------|
| rhumatoid arthritis –      | 4 pers. | (2%) |
| Otto-Schrabek disease -    | 2 pers. | (1%) |
| chemotherapy -             | 6 pers. | (3%) |
| aneurysmal bone cyst –     | 2 pers. | (1%) |



# Previously operated: 143 pers. (74%), Some of them repeatedly: 95 pers. (49%)







Sequelae of avascular aseptic necrosis of femoral heads



**Congenital bilateral hip dislocation** (condition after inappropriate surgery) The hip replacement was performed only when growth plate was closed (Y-shaped cartilage of the acetabulum and the epiphyseal growth plate area of the femoral head)



## Endoprosthesis, design of Zweimüller, with biological fixation of components





#### Cup for porous bone











## high molecular weight polyethylene (cavity liner) +

As the bearings used:

#### ceramics



**156 (73%)** 

#### metall



25 (12%)

oxinium



33 (15%)

## Walking with crutches, with a dosed support allowed in 3-4 days after surgery.

# Walking with the full load – in 3 months after operation.



Tenomyotomy of femoral adductors was performed in 6 cases (3%).

Full elimination of flexion contractures during a period of 6 - 12 months in all patients.





#### In 185 patients (96%) a shortening from 2 to 8 cm was noted.

After hip replacement:

In 75 patients (39%), the alignment of the length of the lower extremities was achieved;

112 patients (58%) had residual shortening from 1 to 3 cm;

Lengthening was performed in 6 patients (3%) with residual shortening more than 3 cm



We carry out a monitoring of all patients with the mandatory examination and X-ray control in 3 months after surgery, and then at least 1 time per year.



#### Early postoperative complications

#### In 7 patients (3%) - neurological complications

# In 4 patients (3%) - dislocation of the replaced femoral head (due to violation of patient's regimen)



## Late postoperative complications

### 1 case (0.5%) - periprosthetic fracture of the femur







## Maximum follow-up period was 7 years.

# In 207 cases (97%) good results of treatment were obtained.





## A clinical case



#### Patient A., 17 yo., spondyloepiphyseal dysplasia







# 6 months after operation on the right and 8 days after operation on the left

#### Rehabilitation by robotic system "Lokomat"









In 1.5 years after hip replacement on both sides





Patient K., 16 yo., congenital dislocation of the left hip, condition after multiple surgery




In adolescents with irreversible deformities of the hip, the total hip joint replacement combined with early rehabilitation is an appropriate and modern treatment method, allowing in 4-6 months to relieve the patient from pain, physical and social limitations.



www.rosturner.ru

2

Thank you for your very kind attention!





SCFE







Università degli Studi di Torino Centro Traumatologico Ortopedico Clinica Ortopedica e Traumatologica I *www.chirurgia-bacino-anca.unito.it* 



## **CLASSIFICATION**

ONSET OF SYMPTOMS
 acute (less than 3 weeks)
 chronic (more than three weeks)

•STABILITY

•Unstable= severe hip pain and the child's inability to ambulate

Stable= the child is able to walk with or without

crutches

SEVERITY
mild (0-30°), moderate (30-50°), severe (>50°)

# **ACUTE SCFE**

- 10-15% of the cases
- •AVN rate up to 60%



- Mostly acute on chronic
- Urgent reduction and fixation





## **Urgent reduction and fixation**

## •TIMING •Within 24 h ? ASAP

•TECHNIQUE •Close /Open ? •Pinning/Modified Dunn ?





- "At surgery posterior callus could be demonstrated in 27/35 SCFE hips with complete disconnection
  Posterior callus leads to strectching of the retinaculum at epiphyseal realignement
- Retinacular stretching stops epiphyseal perfusion"



# **CLOSE REDUCTION / PINNING**

- safe in true acute SCFEs
- danger of AVN due to stretching of retinacular vessels in acute on chronic SCFEs

# **CHRONIC SCFE**

•85-90% of the cases



- •AVN rate lower (6 to 58%?)
- •prototype of cam impingement: Ganz:" 93% with visible and 70% with substantial damage of acetabular cartilage at surgery"

J Pediatr Orthop • Volume 29, Number 6, September 2009

ORIGINAL ARTICLE

#### Femoroacetabular Impingement After Slipped Capital Femoral Epiphysis: Does Slip Severity Predict Clinical Symptoms?

Michael K. Dodds, MCh, MRCSI,\* Damian McCormack, MCh, FRCSI,\* and Kevin J. Mulhall, MCh, FRCSI\*

#### TABLE 2. Relationship of Symptoms and Signs to Southwick Slip Grade

| Southwick Slip Grade                     | Number | Mean Harris<br>Hip Score | Pain (%)     | Pistol-grip<br>Deformity (%) |
|------------------------------------------|--------|--------------------------|--------------|------------------------------|
| Grade 0 pre-slip/prophylactic<br>pinning | 7      | 98.6                     | 2/7 (29%)    | 4/7 (57%)                    |
| Grade 1 (0-30)                           | 30     | 95.6                     | 10/30 (33%)  | 20/30 (67%)                  |
| Grade 2 (30-60)                          | 8      | 97.0                     | 3/8 (38%)    | 6/8 (75%)                    |
| Grade 3 $(>60)$                          | 4      | 98.0                     | 0/4(0%)      | 4/4 (100%)                   |
| Total                                    | 49     | 96.6                     | (15/49 (31%) | 34/49 (69%)                  |

## GOALS

Treat the articular damage
 Restore the anatomy
 Reorientation of the epyphisis
 Treatment of pelvitrochanteric impingement
 Restoration of abductors lever arm











#### Functional Outcome of Stable Grade III Slipped Capital Femoral Epiphysis Treated With In Situ Pinning

Pablo Castañeda, MD, Carlos Macías, MD, Adolfo Rocha, MD, Alberto Harfush, MD, and Nelson Cassis, MD

**Results:** The mean Iowa Hip Score was 84.73. Fifty-two patients were considered to have an excellent result, 28 a good result, 16 a fair result, and 9 a bad result.



ISSN 1120-7000

#### **Current concepts in management of slipped capital** femoral epiphysis

Bernd Bittersohl<sup>1</sup>, Harish S. Hosalkar<sup>2</sup>, Christoph Zilkens<sup>1</sup>, Rüdiger Krauspe<sup>1</sup>

<sup>1</sup> University of Düsseldorf, Medical Faculty, Department of Orthopedic Surgery, Düsseldorf - Germany <sup>2</sup> Center of Hip Preservation and Children's Orthopaedics, San Diego, California - USA

- in situ pinning with no attempt at slip-reduction is widely accepted in the treatment of mild and moderate slips
- many hips fail to remodel, resulting in various grades and forms of FAI that predisposes the hip to early OA

### **Extraarticular osteotomies**

Schai P. A., Exner G. U. Corrective Imhauser Intertrochanteric Osteotomy. Oper Orthop Traumatol 2007;19:368-388



- Low complication rate
- Acceptable clinical results at long term follow-up
- •Early OA
- •THR more demanding

Clin Orthop Relat Res (2009) 467:704–716 DOI 10.1007/s11999-008-0687-4

SYMPOSIUM: FEMOROACETABULAR IMPINGEMENT: CURRENT STATUS OF DIAGNOSIS AND TREATMENT

### Capital Realignment for Moderate and Severe SCFE Using a Modified Dunn Procedure

Kai Ziebarth MD, Christoph Zilkens MD, Samantha Spencer MD, Michael Leunig MD, Reinhold Ganz MD, Young-Jo Kim MD, PhD









5. Epiphyseal dislocation



6. Inferior cheiloplasty



8. Head readuction



9. Fixation: 1° wire through the fovea capitis in a retrograde direction



#### 10. Distalization of the greater trochanter



Clin Orthop Relat Res (2009) 467:704–716 DOI 10.1007/s11999-008-0687-4

SYMPOSIUM: FEMOROACETABULAR IMPINGEMENT: CURRENT STATUS OF DIAGNOSIS

AND TREATMENT

### Capital Realignment for Moderate and Severe SCFE Using a Modified Dunn Procedure

Kai Ziebarth MD, Christoph Zilkens MD, Samantha Spencer MD, Michael Leunig MD, Reinhold Ganz MD, Young-Jo Kim MD, PhD

- 40 cases (2 hospitals)
- f.u. 1-8 y
- AVN chondrolysis 0%
- residual impingment : 1 case
- revision surgery: 3 cases (K wire failure)
- $\alpha$  angle correction: 100%

## Treatment of Slipped Capital Femoral Epiphysis with a Modified Dunn Procedure

By Theddy Slongo, MD, Diganta Kakaty, MD, Fabian Krause, MD, and Kai Ziebarth, MD

Investigation performed at the Department of Paediatric Surgery, University Children's Hospital, Bern, and the Department of Orthopedic Surgery, University Hospital Bern, Bern, Switzerland

**Results:** Twenty-one patients had excellent clinical and radiographic outcomes with respect to hip function and radiographic parameters. Two patients who developed severe osteoarthritis and osteonecrosis had a poor outcome. The mean

- 23 cases
- f.u. 2-5
- AVN 2/23



#### S.E. female, 12 y.o.







# A.N. male 16 y.o.











ASL TO 4 POLIANBULATORIO CALUSO : ACTIS NICOLO 22/04/1 : NECOLO 22/09/2010 15.09 TSBH

(S)

- AVN: 6\54
- 4 acute (all but 1 referred after 48 h)
- 2 chronic (partial collapse)
- One further head collapse was not considered for neglected postoperative protocol (full weight bearing at suture removal):
  - Relevance of the compliance





Courtesy of G. Marrè, S. Boero Gaslini Institute, Genova




#### ADVANTAGES

- Treatment of the articular damage
- Restoration of the anatomy
- 3. Restoration of abductors lever arm
- 4. Correction of limb length



#### DRAWBACKS

- 1. Learning curve
- 2. Complications rare but potentially severe in a short term

- pinning in situ is the treatment of choice for slips up to 30°.
- For more severe slips modified Dunn reallignement provides high amount of excellent results with low complication rate.
- •The results are reproducible by trained

surgeons





#### Adolescent/Young Adult Sequelae of Perthes' Disease

"A comprehensive review of Perthes' leaves you more confused at the end than you were at the beginning"

> J N O'Hara Birmingham, UK

## Legg-Calve-Perthes Disease Hypothesis

"In the susceptible child the changes which are called Legg-Calve-Perthes disease are the consequences of ischaemia of variable duration, followed by a repair process, with a (variable) growth disturbance, which if severe (or uncontrolled) leads to femoral head deformity and subsequent (premature) arthritis" [after A Catterall, 1982]

Why does OA Hip A occur?

Dislocation Dysplasia

Perthes'

SUFE





#### Treatment Options for Perthes Disease

 Many different treatments
 Many different indications/contraindications

Plenty of Controversy
Corollary – few negligence cases

- Classificationssss of LCPD (all based on a snapshot in time!) Salter – 2 Catteral - 4

- Benefit to patients.....questionable
  Benefits to Surgeons...... A certain degree of (un) certainty. (of this we can be sure)
  Benefits to originators.....
  - Many free trips and dinners

#### **Certainties about Life**



Taxation

Rust in your car
The weather forecast will be wrong

#### **Certainties About Perthes' Disease**

- Round Head = Good, Durable Result
- Younger patients better results

#### Certainties of Treatment

- Perthes' disease remains a riddle wrapped in a mystery inside an enigma
   12 Total and the second second
- **13 Journeys to the moon.**\$\$\$\$\$\$\$\$......

## Decision Making in active Perthes' disease.

■ Include, head predicted to be out of round O/E  $\blacksquare$  Females > 7 $\blacksquare$  Males > 8 Herring 2&3 ■Salter "B" PFO varus if only 20 degrees required ■ BIPO if >20 degrees required, age 8/9

or over.



#### Achieves automatic and proportional medialisation/distalisation

Three equal cuts give strong interlock but prevent anteversion adjustment



The essential principle of the operation is to make three linked bone cuts on the ilium, the angle between them (here 30 °) reflecting the intended lateral rotation of the central acetabular fragment (CAF). An external fixator is attached to the CAF in the plane of the presenting acetabular mal-alignment to provide a powerful lever to mobilise the CAF and manoeuvre it into a position of predictable and reproducible correction.

#### BIPO KM curve for dysplasia (low threshold for arthroplasty) [similar to Millis but only 70% F/U] No arthroplasties x 6years[PAO cont decline]



## **Our indications**

- Catterall group 3 and 4
- Herring group B and C
- Waldenstrom's stage 2 and early 3
- Containable at examination under anaesthesia (EUA) or arthrogram
- A pre-operative EUA and / or an arthrogram was performed in every case

#### **LCPD** Patient Characteristics

- 22 hips of 21 patients with severe LCPD with an average age of onset of 7 years and 7 months (range 5-11 years)
- 13 hips were in Waldenstrom's stage II and 9 were in stage III
- 17 hips were Herring group C and 5 were group B
- 6 hips had 4 radiological at risk signs, 9 had 3, 4 had 2 and 3 had 1







#### K-M survival



**Causes of Symptoms** (Adolescent/Young Adult) **Extra-articular** (overloading/impingement) Abnormal femoral version Abnormal femoral offset/neck length

**Operations on Symptomatic Healed** Perthes' Disease (Adolescent/Young Adult) Do nothing (!) Correct acetabular dysplasia Correct femoral version Correct femoral offset/neck length Surgical dislocation/debridement for impingement Abandon hope and wait for arthroplasty.

# **Operations For Extra-articular Impingement**

- Combinations of
- Pelvic Osteotomy (sometimes retroverted)Femoral Osteotomy

Most commonly BIPO &Valgus
Also DFO (+/- BIPO or debridement)

#### **Adult Perthes**

# Short neck, high GT, dysplastic acetabulumS.W.,28yrs

5CM



Physiological acetabular anteversion

#### Adult Perthes, 28yrs.







## Lawyer, aet 29, old LCPD



# Post-op



# 14 yrs later





#### **BIPO & Valgus; Patients**

We identified 65 patients (66 hips)
mean age of 29.2 years (range 13.3-51)
mean follow-up of 13.6 years (range 8.1-22.5).

BIPO & Valgus; **Radiological Parameters** Presenting Sourcil Inclination 24<sup>O</sup> (range 14.5-33) Postoperatively 4.9° (range 1-12)typical correction for socket 20<sup>0</sup>, femur valgus 30<sup>o</sup> **1.8** (range 1-2) Tonnis grade preop At mean 13.6yrs F/U was 2.2 (1-3)

BIPO & Valgus; **Short-Term Complications** 1 permanent sciatic nerve injury ■ 2<sup>nd</sup> patient, had a major bleed medially – did we damage the sciatic nerve with a ligaclip?? ■ 1 deep infection (washout / antibiotics) - 5 non-unions (8%) of the femur that required refixation/bone-grafting

## BIPO & Valgus; Metalwork removal

surgeons)

- Advised strongly to every patient
- All femoral plates removed
- 2 Patients still have pelvic metal in situ (apologies to successor arthroplasty
# BIPO & Valgus; Clinical Features at 13.6yrs F/U

- the mean OHS was 56 (range 60-47)
   NAHS 71/80 (range 59-80)
- UCLA activity score 8 (range 5-10)
  - Better than our series of BIPOs for dysplasia.

# BIPO & Valgus; Failure = Arthroplasty

There were 12/66 (18%) conversions to arthroplasty (10 resurfacings, 2 THRs)
at a mean of 7.9 years
(range 2.2-12.2) after surgery
10 of these (84%) were >35 at operation.
Odds ratio higher with age and OA grade

### BIPO

#### (low threshold for arthroplasty)



BIPO + DFO (Double Osteotomy) After Wagner ISSESVA ICT

# **BIPO+DFO**



# **BIPO+DFO**



# BIPO+DFO Patients Details and Follow-up

Twenty four patients (25 hips)

 M: F
 Age
 (9.3–38.8)

 mean follow-up of 7 years (range: 3-14.8).

BIPO+DFO Underlying Disease & Complexity

Legg-Calve-Perthes-Disease : 17
Congenital hip dysplasia : 5
Septic Arthritis : 1
Epiphyseal Dysplasia ; 1

# BIPO+DFO Staging of operations

- 1 (first) had Tonnis acetabuloplasty
- 6 patients had contemporaneous Birmingham Interlocking Pelvic Osteotomy (BIPO) (4 for acetabular retroversion with dysplasia)
- 2 had later surgical dislocations with debridement (at metalwork removal)

# BIPO+DFO Failure;

Arthroplasty 2/25at 2 and 13.8 years

8%

# BIPO+DFO Medium Term Clinical Outcome

Mean Oxford Hip Score 41.6 (range:58-27),
 Non-Arthritic Hip Score 53.4 (range:25-77)
 UCLA activity score 4.2 (range:2-6)

# BIPO+DFO Tonnis OA Grade

## BIPO+DFOComplications (thanks to Heinz Wagner)

Problems (1)Soluble and do not change outcome Obstacles (3)Require a change of treatment and do not affect outcome Complications (0)■ Compromise outcome

# **Changes in Bone Shape**

preop
 Ave. shortening pre-op
 Avg. proximal migration of GT
 2.4 cms

postop
 Avg. Distalisation of GT
 Avg. Gain in Length
 Avg. Offset gain

2 cms 2.5 cms 1.5 cms

Patients were most pleased with discarding shoe modifications and inserts (incongruity)

# BIPO+DFO Operation Achieves

More difficult with blade-plate,
 easy with LCS-DF

Independant correction of

- leg-length
- Offset

Articulotrochanteric distance









# 2 or 3 earlier Valgus osteotomies [!]









# Legg Calve Perthes' Disease

No matter how successful we can be with producing a spherical head, we cannot usefully restore proximal femoral growth. Good, reliable options are now available for dealing with dysplasia and extra- and intra-articular impingement For some patients the prognosis is

irreversibly poor.

## Thank You





### **International Combined Meeting BRITISH HIP SOCIETY SOCIETA' ITALIANA DELL'ANCA** Milano Italia - 26-27 novembre 2015

# Algorithm for surgical treatment of dislocated hip in Cerebral Palsy (CP) HIP or

#### **Prof. Nicola Portinard**

CLE

Direttore Clinica Ortopedica Università degli Studi di Milano ile U.O. Ortopedia Pediatrica e Neu Humanitas Research Hospital nicola.portinaro@humani



edia



### **Causes of hip dislocation in CP**

Generally normal at birth

 Abnormal forces and altered vectors acting on the acetabular roof deformity

 Spasticity: unclear, overestimated ???? (dislocated also in hypotonic)





#### **Guidelines surveillance**

#### DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY

#### SYSTEMATIC REVIEW

#### Australian hip surveillance guidelines for children with cerebral palsy: 5-year review

MEREDITH WYNTER<sup>1</sup> | NOULA GIBSON<sup>2</sup> | KATE L WILLOUGHBY<sup>3</sup> | SARAH LOVE<sup>2</sup> | MEGAN KENTISH<sup>1</sup> | PAM THOMASON<sup>4</sup> | H KERR GRAHAM<sup>3,4</sup> | ON BEHALF OF THE NATIONAL HIP SURVEILLANCE WORKING GROUP\*

1 Questioland Paediatric Rehabilitation Service, Lady Cilento Children's Hospital, Bibbane,Did; 2 Princets Marganet Hospital for Children, Peth, WA; 3 Department of Orthopaedics, The Royal Children's Hospital, Melbourne, Vic.; 4 High Williamson Geit Analysis Laboratory. The Royal Children's Hospital, Melbourne, Vic., Asstalia.

Correspondence to Mendith Wyrter, Ganeraland Prediation Service, 50 Ledy Oliento Childen's Hospital, PO Box 3039, South Bridsone, Vo. 4101, Australia. S-mail: mendith.wyrter@realth.gld.go.au

Members of the National Hip Survillance Working Group are listed in Appendix.







Figure 1: Predicted Gross Motor Function Measure (GMFM-66) motor scores as a function of age by Gross Motor Function Classification level. \*GMFCS levels with significant average peak and decline. Dashed lines illustrate age and score at peak GMFM-66.

AR\*iel



# Radiological measurements used for diagnosis and classification of hip dislocation

- A.I. (Acetabular Index): >25°
- M.P.(migration percentage): >33%
- N.S.A. (Neck shaft Angle): >155°
- H.E.A. (Hilgereineir epiphyseal angle): < 12°



#### Algorithm for the surgical treatment of dislocated hip in CP



### **Non-invasive treatment**



Journal of Medicine and Life Volume 7, Special Issue 3, 2014

Extracorporeal Shockwave Therapy (ESWT) benefits in spastic children with Cerebral Palsy (CP)





### **Combined soft tissue release**

adductors, psoas, rectus femoris e medial hamstring







Early preventive surgery Late correction surgery

Salvage procedures

#### Early: Proximal Femoral Temporary Epiphysiorisis Portinaro et Al 2005







### Late: Varus Osteotomy of Proximal Femur









#### Late: Varus Derotation Femoral Osteotomy Pelvic Osteotomy








### Salvage: Valgus Osteotomy of Proximal Femur









### Salvage: Resection of the Femoral Head Valgus Derotation Femoral Osteotomy







#### **Resection of the Femoral Head and Neck**





## **Our Experience**

#### Early: proximal femoral epiphysiorisis

- Patients: 28
- Mean Age at the time of surgery: 7.6 years
- Avarage follow-up: 3.4 years (1.4-5.6 years)
- GMFCS: 0 patients Grade I
  - 0 patients Grade II
  - 0 patients Grade III
  - 16 patients Grade IV (57.15%)
  - 12 patients Grade V (42.85%)

## Results

- Reimers' migration percentage (MP): Left side: △ 11.66% Right side: △ 6.96%
- Acetabular Index (AI):

Left side:  $\triangle 6.37^{\circ}$ Right side:  $\triangle 5.59^{\circ}$  Neck-shaft Angle (NSA):
Left side: △ 12.81°
Right side: △ 12,92°

## Complications

•2 patients (7.14%): replacement of the screw

- •3 patients (10.71%): needed bilateral botox
- •8 patients DVO's
- •0 AVN!!!!!!! Big concern

## Pre-op

## Post-op





## Pre-op

## Post-op





## At two years



### 1 YR Pre-op

## Post-op





### At two years

### At four years





## Pre-op







### At two years

## At four years





## Pre-op

## Post-op





### At three years

## Removal of screws at 3.5 years





## Late: Combined soft tissue and pelvic recon

- Patients: 66 (74 hips)
- Age: 10.97 ± 2.82
- Follow up:  $3.08 \pm 1.81$  years
- Robin's Score: 2 hips Grade II (2.7%)
  - 2 hips Grade III (2.7%)
  - 62 hips Grade IV (83.78%)
  - 8 hips Grade V (10.81%)

• GMFCS:

- 0 Pt Grade I
- 5 Pt Grade II (7.6%)
- 13 Pt Grade III (19.7%)
- 19 Pt Grade IV (28.8%)
- 29 Pt Grade V (43.9%)

## Results

#### •<u>Reimers' migration percentage (MP):</u>

Pre-Op: **66,11% (**Range 11%-100%) Final follow-up: **3.95%** (Range 0%-18%)

#### Acetabular Index (AI):

Pre-Op: **45.31°** (Range 30° -58°) final follow-up: **27.15°** (Range 18° -34°)

#### Neck-shaft Angle (NSA):

Pre-Op: **162.57°** (range: 144° -176°) final follow-up: **122.55°** (range:106-138°)

## Complications

•Early: -30 days:

- 8 hips (10.80%)  $\rightarrow$  4 Post-operative blood transfusions (5.40%)
  - $\rightarrow$  3 Wound dehiscence (4.05%)
  - $\rightarrow$  1 Non significant increase of RI no further surgery was required during the follow-up

•Late: +30 days:

16 hips  $(17.57\%) \rightarrow 11$  graft resorption not associated with significant deterioration of AI  $\rightarrow$  5 painful for more than 6 months with complete resolution within one yr of follow-up (6.76%)

## No: $\rightarrow$ AVN of the femoral head $\rightarrow$ Premature closure of triradiate cartilage $\rightarrow$ Stress fractures after metal removal

#### Pre-operative AP radiograph of pelvis



#### Post-operative

## Post-operative opposite side at 6 months





#### At one year

#### At two years



#### Removal of plates (2.5 years)



### Pre-op





#### Post-op





# Grazie













## Hip Arthroscopy in the Immature Skeleton

## Richard E Field PhD, FRCS, FRCS(Orth)

Professor of Orthopaedic Surgery, St George's University of London Director of Research, South West London Elective Orthopaedic Centre Consultant Orthopaedic Surgeon, Epsom & St Helier NHS Trust

### Felix Allen *MBBS*

Surgical Research Fellow, South West London Elective Orthopaedic Centre





INTERNATIONAL SOCIETY FOR HIP ARTHROSCOPY





Gross RH. Arthroscopy in hip disorders in children. Orthop Rev 1977;6:43-9



First English language paper published in 1977 by Richard Gross, describing 32 diagnostic arthroscopic procedures in 27 children for CDH, Perthes, SUFE and neuropathic subluxation.

## **Anatomical Considerations**

- Femoral anteversion decreases with age from 31.1° at one year to 15.4 ° at 16 years<sup>1</sup>
- The neck-shaft angle also has been reported to decrease from 136.2 ° at one year to 127.3 ° at 18 years<sup>2,3</sup>
- Fusion of the acetabulum and proximal femoralepiphyses occurs at between 17-19 years
  - 1. Fabry, Guy, G. Dean MAacEWwen, and A. R. Shands Jr. "Torsion of the femur." *The Journal of Bone & Joint Surgery* 55.8 (1973): 1726-1738.
  - 2. Lee, Mark C., and Craig P. Eberson. "Growth and development of the child's hip." *Orthopedic Clinics of North America* 37.2 (2006): 119-132.
  - 3. Zippel, H. "Untersuchungen zur Normalentwicklung der Formelemente am Hüftgelenk im Wachstumsalter." *Beitr Orthop* 18 (1971): 225-269.

## Indications

- Infants & toddlers DDH & Septic Arthritis
- Child Legg Calve Perthes
- Adolescent SUFE & Osteochondritis dissecans
- Teens Dysplasia Sports and Trauma

## **Equipment & Instruments**



## 2.9mm arthroscopes

## Infants



**TIPS & TECHNIQUES** 

#### Hip Arthroscopy for the Treatment of Children With Hip Dysplasia: A Preliminary Report

James J. McCarthy, MD; G. Dean MacEwen, MD

#### Orthopedics

#### April 2007 - Volume 30 · Issue 4

Posted April 1, 2007 DOI: 10.3928/01477447-20070401-08





2 girls 1 boy Mean age 14 months



Arthroscopy: The Journal of Arthroscopic & Related Surgery



Volume 21, Issue 5, May 2005, Pages 574–579

Original article

## Arthroscopic-Assisted Surgical Treatment for Developmental Dislocation of the Hip

Okay Bulut, M.D.<sup>a,</sup> 🍐 🖾, Hayati Öztürk, M.D.<sup>a</sup>, Gündüz Tezeren, M.D.<sup>a</sup>, Sema Bulut, M.D.<sup>b</sup>








## Septic Arthritis

# •Arthroscopic lavage has been successfully used to treat septic arthritis of the paediatric hip<sup>1</sup>

1. Chung, Wui K., Gordon L. Slater, and Edward H. Bates. "Treatment of septic arthritis of the hip by arthroscopic lavage." *Journal of Pediatric Orthopaedics*13.4 (1993): 444-446.

### Children



# Legg Calve Perthes



- Indications for arthroscopy in this condition are limited
- It has been used to characterise intra-articular pathology in children with the condition and may aid further operative planning<sup>1,2</sup>
  - 1. Roy, Dennis R. "Arthroscopy of the hip in children and adolescents." *Journal of children's orthopaedics* 3.2 (2009): 89-100
  - Suzuki, Shigeo, et al. "Arthroscopy in 19 children with Perthes' disease: Pathologic changes of the synovium and the joint surface." *Acta Orthopaedica*65.6 (1994): 581-584.

## Legg Calve Perthes

- The condition has been associated with loose bodies, and in this context arthroscopy and removal of these have improved hip scores post-operatively<sup>1</sup>

1. Kocher, Mininder S., et al. "Hip arthroscopy in children and adolescents." *Journal of Pediatric Orthopaedics* 25.5 (2005): 680-686.

#### Adolescents





### Post DDH

 Arthroscopy in adolescents with previously treated DDH has revealed high rates of cartilage lesions and labral tears<sup>1</sup>

1. Fujii, Masanori, et al. "Intraarticular findings in symptomatic developmental dysplasia of the hip." *Journal of Pediatric Orthopaedics* 29.1 (2009): 9-13.

# Slipped capital femoral epiphysis, SCFE /SUFE

- Two studies have used arthroscopy to describe intra-articular changes after SCFE<sup>1,2</sup>.
- Arthroscopic head-neck osteoplasty following in situ pinning gave excellent short term outcomes in a series of three patients<sup>2</sup>
- A more recent Brazilian case series suggests that severe SCFE can be successfully corrected arthroscopically, although one of five cases went on to develop avascular necrosis<sup>3</sup>
  - 1. Futami, Tohru, et al. "Arthroscopy for slipped capital femoral epiphysis." *Journal of Pediatric Orthopaedics* 12.5 (1992): 592-hyhen.
  - Leunig, Michael, et al. "In situ pinning with arthroscopic osteoplasty for mild SCFE: a preliminary technical report." *Clinical Orthopaedics and Related Research*<sup>®</sup> 468.12 (2010): 3160-3167.
  - 3. Akkari, Miguel, et al. "Trapezoidal bony correction of the femoral neck in the treatment of severe acute-on-chronic slipped capital femoral epiphysis."*Arthroscopy: The Journal of Arthroscopic & Related Surgery* 26.11 (2010): 1489-1495.

#### **Osteochondritis Dissecans**





#### Post PAO



 Arthroscopy has been utilised to investigate and treat ongoing hip pain following periacetabular osteotomy, PAO. Follow up Harris Hip scores were significantly improved<sup>1</sup>.

1. Kocher, Mininder S., et al. "Hip arthroscopy in children and adolescents." *Journal of Pediatric Orthopaedics* 25.5 (2005): 680-686.







- This condition is increasingly recognised in the adolescent athlete
- As with the adult population the presence of both cam and pincer lesions is often present.
- Arthroscopic intervention in adolescents has been associated with significant improvements over a range of outcome measures and high post-operative satisfaction<sup>1,2</sup>
  - Tran, Phong, Michael Pritchard, and John O'Donnell. "Outcome of arthroscopic treatment for cam type femoroacetabular impingement in adolescents." *ANZ journal of surgery* 83.5 (2013): 382-386.
  - 2. Philippon, Marc J., et al. "Early outcomes after hip arthroscopy for femoroacetabular impingement in the athletic adolescent patient: a preliminary report." *Journal of Pediatric Orthopaedics* 28.7 (2008): 705-710.



#### Trauma



- Ligamentum Teres sprains and tears
- Traumatic hip dislocation

Kashiwagi, Naoya, Shigeo Suzuki, and Yoichi Seto. "Arthroscopic treatment for traumatic hip dislocation with avulsion fracture of the ligamentum teres."*Arthroscopy: The Journal of Arthroscopic & Related Surgery* 17.1 (2001): 67-69.

# JCA

- An early paper describes the use of hip arthroscopy in juvenile chronic arthritis, JCA, to evaluate its severity and perform synovectomy or tentotomy if indicated<sup>1</sup>
- A later study of three patients undergoing arthroscopic synovectomy for JCA found a significant improvement in function<sup>2</sup>
  - 1. Holgersson, Svante, et al. "Arthroscopy of the hip in juvenile chronic arthritis." *Journal of Pediatric Orthopaedics* 1.3 (1981): 273-278
  - 2. Kocher, Mininder S., et al. "Hip arthroscopy in children and adolescents."*Journal of Pediatric Orthopaedics* 25.5 (2005): 680-686.

# Osteoid Osteoma

 Both acetabular and proximal femoral osteoid osteomas have been successfully excised arthroscopically<sup>1, 2</sup>

- Aşık, Mehmet, et al. "Arthroscopic excision of acetabular osteoid osteoma in a 7-year-old patient." *Knee Surgery, Sports Traumatology, Arthroscopy* (2014): 1-4.
- Lee, Dae-Hee, Woong-Kyo Jeong, and Soon-Hyuck Lee. "Arthroscopic excision of osteoid osteomas of the hip in children." *Journal of pediatric orthopaedics*29.6 (2009): 547-551.

# Loose bodies

- Dahners found loose bodies in 33 out of 36 patients (92%) arthroscoped post traumatic hip dislocation
  (1).
- Coleman described seven cases of loose bodies in adolescent hips without any apparent underlying pathology (2).

#### PEDIATRIC ORTHOPAEDICS

- 1. Mullis BH, Dahners LE. J Orthop Trauma. 2006 Jan;20(1):22-6. Hip arthroscopy to remove loose bodies after traumatic dislocation.
- 2. Santora SD, Stevens PM, Coleman SS. Intra-articular loose bodies in the adolescent hips. *Journal of Paediatric Orthopaedics* 1990; **10**: 261-4.

## Complications

- Paediatric hip arthroscopy carries all the risks of adult hip arthroscopy as well as the potential for growth plate disturbance, physeal separation and osteonecrosis.
- Nwachukwu et al. reviewed 218 arthroscopies in 175 patients under 18 years and found the following complications<sup>1</sup>:
  - Transient pudendal nerve palsy (2)
  - Instrument breakage (1)
  - Suture abscess (1)
  - 1. Nwachukwu, Benedict U., et al. "Complications of hip arthroscopy in children and adolescents." *Journal of Pediatric Orthopaedics* 31.3 (2011): 227-231.

# **Complications (cont)**

- Recurrent labral tear following initial debridement<sup>1</sup>
- Avascular necrosis after: soft tissue debridement in the context of DDH and arthroscopic resection of the femoral neck with pinning in a child with SCFE<sup>2, 3</sup>

Kocher, Mininder S., et al. "Hip arthroscopy in children and adolescents." *Journal of Pediatric Orthopaedics* 25.5 (2005): 680-686.

McCarthy, James J., and G. Dean MacEwen. "Hip arthroscopy for the treatment of children with hip dysplasia: a preliminary report." *ORTHOPEDICS-NEW JERSEY-* 30.4 (2007): 262.

Philippon, Marc J., et al. "Early outcomes after hip arthroscopy for femoroacetabular impingement in the athletic adolescent patient: a preliminary report." *Journal of Pediatric Orthopaedics* 28.7 (2008): 705-710.

# **Complications (cont)**



- Capsulolabral adhesions requiring a revision arthroscopy developed in 13% of patient following treatment for FAI<sup>1</sup>
- 1. Philippon, Marc J., et al. "Outcomes 2 to 5 years following hip arthroscopy for femoroacetabular impingement in the patient aged 11 to 16 years." *Arthroscopy: The Journal of Arthroscopic & Related Surgery* 28.9 (2012): 1255-1261.

## Summary

- Hip arthroscopy can be used in the paediatric and adolescent population to treat a range of pathologies
- Outcomes are generally favourable although modified HHS did not improve in patients undergoing arthroscopy with full thickness chondral defects and AVN
- Complication rates have been reported to be as low as 1.8% however there is a high rate of capsulolabral adhesions following treatment for FAI





# Thank you





INTERNATIONAL SOCIETY FOR HIP ARTHROSCOPY





