

TRIBOLOGIA, <u>BIOMECCANICA</u> <u>E DIAGNOSTICA</u>

- 1. Does the use of a ceramic head eliminate the risk of trunnionosis?
- 2. A Systematic Review And Meta-Analysis Of Metal On Polyethylene Versus Ceramic On Polyethylene Bearing Surfaces
- 3. Wear in total hip arthroplasty using ceramic head: 10 years maximum fu
- 4. Functional and clinical outcome of THA using large diameter ceramic couples
- 5. Mis-seating of Trident ceramic acetabular liners: a 6-year audit of incidence and revision rate in South Devon, UK
- 6. Is wear of Dual Mobility Cup lower or upper than Conventional Cup? Analysis of an in vitro standard test
- 7. Potential Markers of Systemic Toxicity Induced by Metal Ions in Patients with Hip Resurfacing
- 8. What is the natural history of asymptomatic pseudotumours associated with metal-on-metal hip resurfacings?
- 9. Ceramic on Ceramic Clinical Results
- 10. Is Squeaking Still a Reason for Concern?
- 11. Is there any evidence that ceramic on poly is better than metal on poly?
- 12. What to do in case of breakage?
- 13. The Bearing is the Key!
- 14. XLPE: clinical implications of different poliethylenes
- 15. Metal on metal total hip replacement: our experience at mid-term follow-up
- 16. Metallosis in total hip arthoplasty: an experimental comparative study in three different bearings
- 17. Trunnionosis in Metal on Polyethylene Uncemented Accolade-Trident Total Hip Replacements
- 18. Stem-neck modular total hip arthroplasty: possible mechanical effects!
- 19. Recall ABG II Modular System: Kaplan Meyer at maximum of 6 years in a series of 151 consecutive patients
- 20. How should we follow-up asymptomatic metal-on-metal hip resurfacing patients? A prospective longitudinal cohort study
- 21. Conditions influencing cobalt and chromium circulating ions level in metal-on-metal patients
- 22. The Problem of Metal-on-Metal Total Hip Arthroplasty. Our experience in 59 cases

TRIBOLOGIA, <u>BIOMECCANICA</u> <u>E DIAGNOSTICA</u>

- 23. 5 year clinical outcomes of 601 metal-on-metal total hip replacements with 36mm heads
- 24. Hip arthroplasty with metal-on-metal tribology: 10-year f-up and ionic release trend in 36mm head implants
- 25. Metasul 28 mm MoM total hip replacements: Adverse reaction to metal debris incidence & outcome at 10 years
- 26. Taperosis what is the problem? Patient evaluation
- 27. "Taperosis": Insights for Clinical Practice from Histological Analysis
- 28. Taperosis: Treatment & Outcomes
- 29. Justification of Modularity. Monoblocks
- 30. Femoral neck modularity: still justified?
- 31. FAI and lumbar stiffness
- 32. Does the femoral head/neck contour in the skeletally mature change over time?
- 33. Initial stability of a new dual mobility cup model: a prospective study compared with European register findings
- 34. Dislocation: Diagnosing Instability
- 35. THA Dislocation: Diagnosis and Prevention
- 36. Assessment of the relationship between pelvic tilt and functional acetabular position with EOS 2D/3D technology
- 37. Dual mobility sockets in patients with high risk of dislocation
- 38. The use of dual mobility bearings in total hip arthroplasty. The UK experience
- 39. Is there a difference in acetabular component orientation and post-op dislocation between elective and trauma THAs?
- 40. The influence of obesity in cup positioning during total hip replacement
- 41. Elevated liner placement: an anatomical study.
- 42. Accurate anatomic restoration in primary total hip replacement with 3D hip planning
- 43. The correlation between femoral offset and clinical outcome
- 44. Body Mass Index, Wound Fat Depth and Radiographic Acetabular Inclination in Total Hip Arthroplasty
- 45. Dysmetry after Hip Arthroplasty
- 46. Bilateral Total Hip Arthroplasty: One-Stage versus Two-Stage Procedure
- 47. Robotic surgery applied to total hip arthroplasty: preliminary results and technical notes
- 48. Clinical and MRI results in 67 patients operated for gluteus medius and minimus tendon tears with a median follow-up of 4.6 years.
- 49. The use of 3T MRI in diagnosing intra-articular hip pathology
- 50. Radiographic evaluation of hip resurfacing: validation of a new zonal system

Does the use of a ceramic head eliminate the risk of trunnionosis?

Anna Di Laura¹, Jay Meswania¹, Harry Hothi¹, Robert Whittaker¹, Young-Min Kwon²,

Gordon Blunn¹, John A. Skinner¹, Alister J. Hart¹

¹ Institute of Orthopaedics and Musculoskeletal Science, University College London and the Royal National

Orthopaedic Hospital, Stanmore, United Kingdom

²Massachusetts General Hospital/Harvard Medical School, Boston, USA

Institutional support from 9 companies

Furlong Foundation

British Hip Society

Depuy ASR Retrieval Program

Stryker Global Modular-Neck retrieval program

EPSRC

Technology Strategy Board

NIHR portfolio

HM coroner

Gwen Fish Charity

Our patient donors

The Rosetrees trust

Dunhill Medical Trust

London Implant Retrieval Centre

Directors Alister Hart, John Skinner, Gordon Blunn

> Manager: Dr Harry Hothi² Administrators Lizzie Ellis²

Researchers Reshid Berber², Anna Panagiotidou². Kevin Ilo² Shiraz Sabah²,, Robert Whittaker² Anna Di Laura². Elizabeth Ellis², Vicky Panagiotopoulou²

Engineers Prof Phillip Noble⁴, Dr Jay Meswania² Dr Paul Bills⁵, Prof Liam Blunt⁵, Radu Racasan⁵

> **Technicians** Siva Mahindan², Bob Skinner²

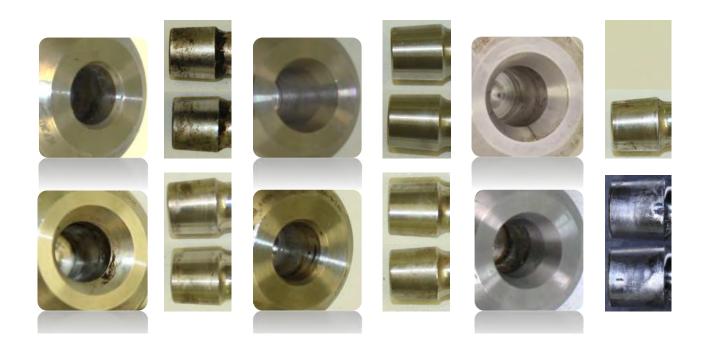
Imaging 3D CT: Johann Henckel¹

MRI radiologists: Dr Michael Khoo⁷, Dr Adam Mitchell Dr Keshthra Satchithananda

Other Surgeon advisers Martyn Porter³, S Muirhead-Allwood¹

> Histopathology: Prof Adrienne Flanagan²

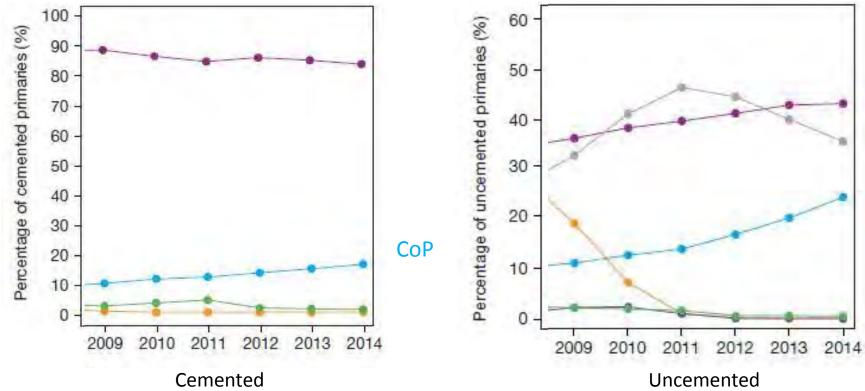
¹Royal National Orthopaedic Hospital, Stanmore ²University College London ³Wrightington Hospital ⁴Baylor College, Houston, USA ⁵EPSRC centre for advanced metrology, UK



www.lirc.co.uk

Introduction

Mechanical wear and corrosion at the head-stem taper junction, commonly referred to as trunnionosis has been implicated in soft tissue reactions and early revision of total hip replacements.


Introduction

CoP

National Joint Registry for England, Wales, Northern Ireland and the Isle of Man: 12th Annual Report 2015.

Research Questions

≜UCL

1 - Does the use of a ceramichead eliminate the damage atthe head/stem junction?

2 - If not, is the damage at this junction clinically relevant?

Study Design

Question 1

GROUP A: Dual Mobility

n=24 BIOLOX[®]delta heads

n=15 CoCr heads

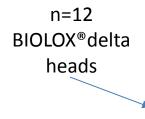
- ONE stem design
- ONE V40 trunnion design
- ONE stem material
- Only difference = head material

Study Design

Question 1

GROUP A: Dual Mobility

n=24 BIOLOX®delta heads


n=15 CoCr heads

- ONE stem design
- ONE V40 trunnion design
- ONE stem material
- Only difference = head material

GROUP **B**: Standard UHMWPE

n=18 CoCr heads

- ONE stem design
- ONE V40 trunnion design
- ONE stem material
- Only difference = head material

Study Design

Question 1

GROUP A: Dual Mobility

n=24 BIOLOX[®]delta heads

n=15 CoCr heads

Goldberg corrosion score [1]

+

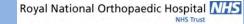
Volume of material loss at the stem trunnion

GROUP **B**: Standard UHMWPE

n=18

CoCr heads

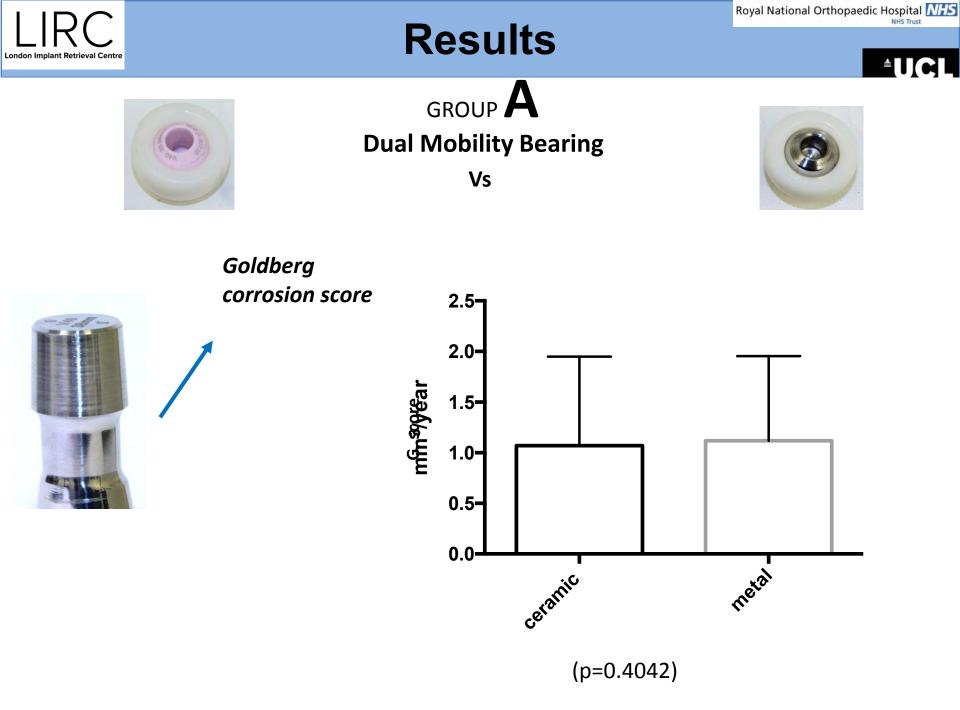
n=12 BIOLOX®delta heads

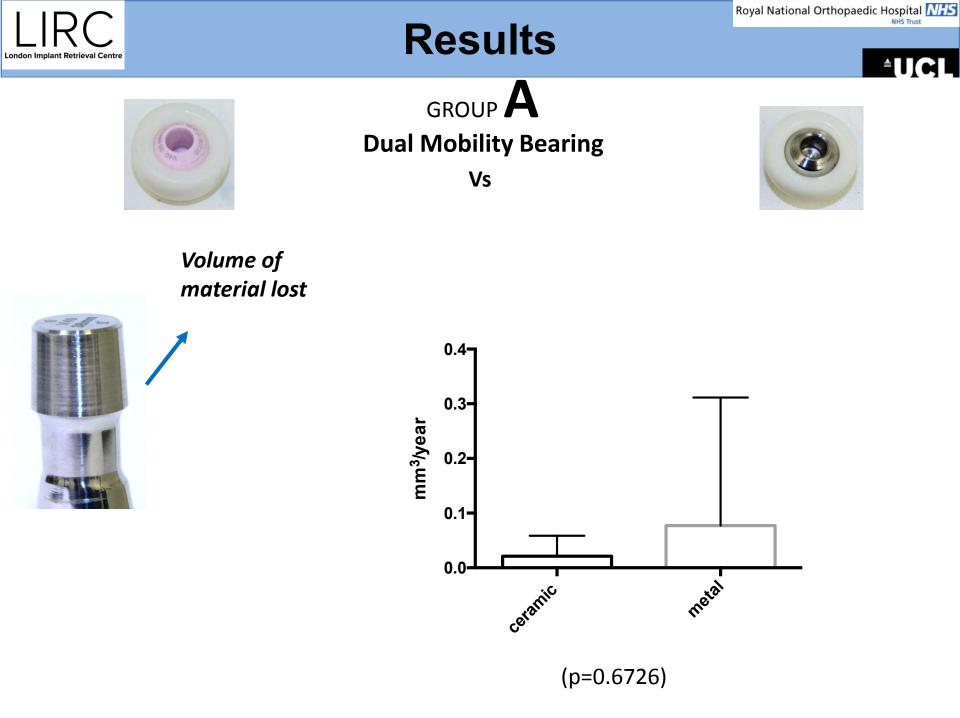

Goldberg corrosion score

4

Volume of material loss at stem trunnion and head taper

[1] Goldberg, Jay R., et al. "A multicenter retrieval study of the taper interfaces of modular hip prostheses." Clinical orthopaedics and related research 401 (2002): 149-161.



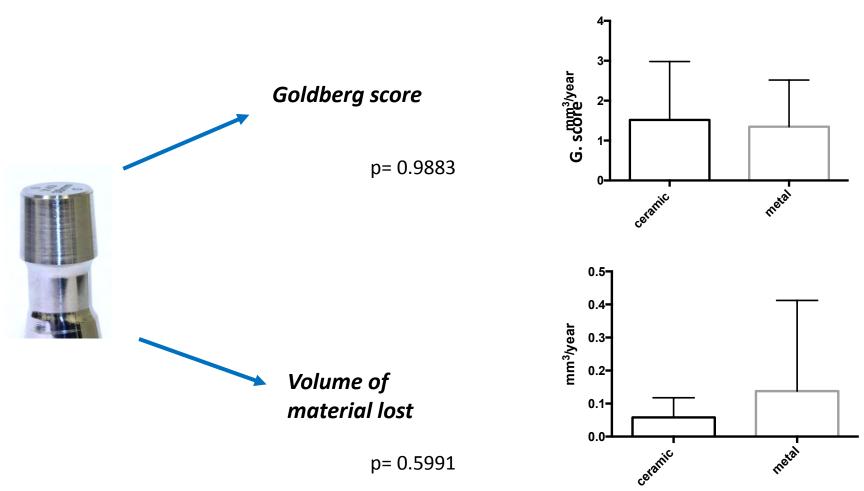


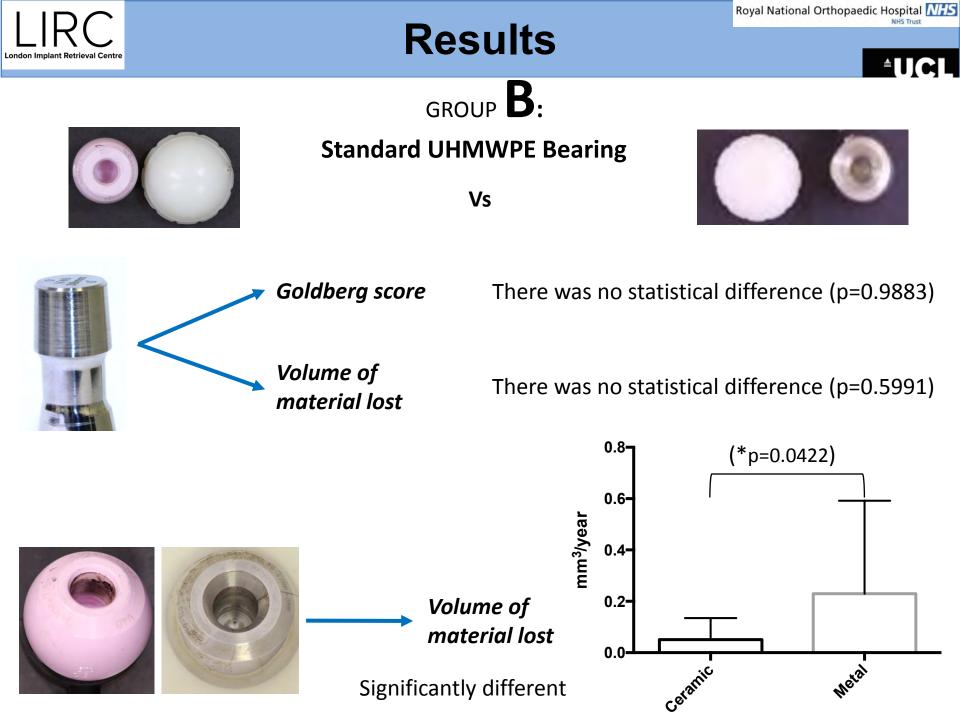
Research Questions

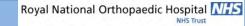
1 - Does the use of a ceramichead eliminate the damage atthe head/stem junction?

Royal National Orthopaedic Hospital

Results


London Implant Retrieval Centre

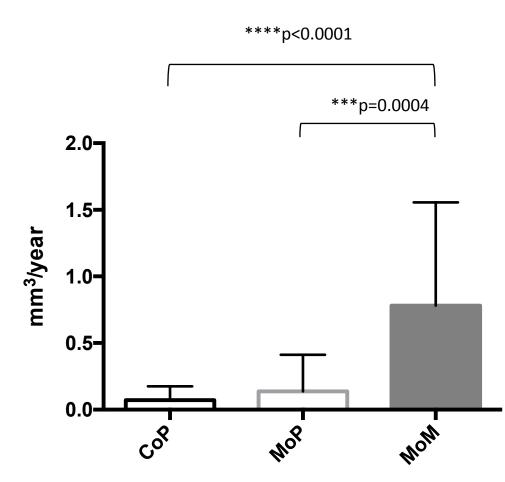

GROUP **B**:


Standard UHMWPE Bearing

Vs

Research Questions

2 - Is the damage at the head/stem junction clinically relevant?



Results

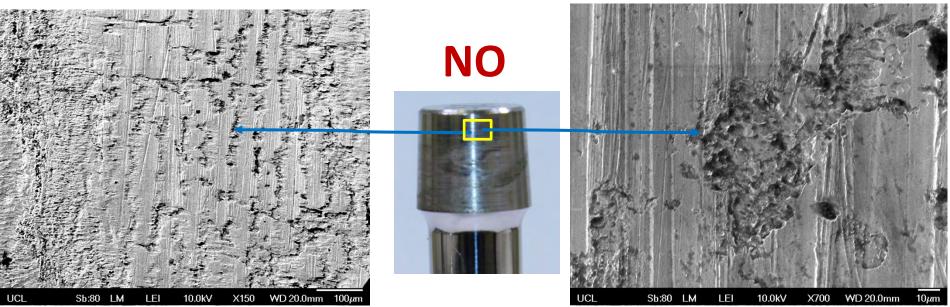
CoP, MoP Vs MoM Bearing

Rates of material loss at the taper junction (stem+head)

[2] "Corrosion of Cemented Femoral Stems may Contribute to Implant Failure", ORS, 2015. Harry Hothi, Andreas Panagiotopoulos, Reshid Berber, Robert Whittaker, Shiraz Sabah, Johann Henckel, Gordon Blunn, John Skinner, Alister Hart.

Damage at the head/stem taper junction does occur in **CoP** bearing combination and it is **comparable** with **MoP** bearing combination at the stem trunnion, it is less at the head taper.

Rates of material loss at the taper junction were negligible when compared with large diameter MoM implants suggesting a mitigation of the problem;


Conclusions

1 - Does the use of a ceramic head eliminate the damage

at the head/stem junction?

FRETTING

CORROSION

[3] Do Ceramic Femoral Heads Reduce Taper Fretting Corrosion in Hip Arthroplasty? A Retrieval Study Steven M. Kurtz PhD, Sevi B. Kocago'z BS, Josa A. Hanzlik MS, Richard J. Underwood PhD, Jeremy L. Gilbert PhD, Daniel W. MacDonald MS, Gwo-Chin Lee MD, Michael A. Mont MD, Matthew J. Kraay MD, Gregg R. Klein MD, Javad Parvizi MD, Clare M. Rimnac PhD

1 - Does the use of a ceramic head eliminate the damage

at the head/stem junction?

2 - If not, is the damage at the head/stem junction clinically relevant? Difficult to answer but damage much less than in LDMOM

Thank You

Royal National Orthopaedic Hospital

Thank you for your attention

www.lirc.co.uk

<u>A Systematic Review And Meta-Analysis Of</u> <u>Metal On Polyethylene Versus Ceramic On</u> <u>Polyethylene Bearing Surfaces</u>

Oliver Gosling MRCS (Eng)¹ Nasir Hussain MSc MD (Cand)² Thomas G. Ferreri MD (Cand)² Emil Schemitsch MD FRCSC³ Amit Atrey⁴ FRCS (Tr & Orth)

¹Orthopaedic Specialist Trainee Surgeon, Musgrove Park Hospital, Taunton ²Central Michigan University College of Medicine, Mt. Pleasant, MI, USA ³Associate Professor of Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, St. Michaels Hospital, ON, Canada ⁴ Orthopaedic Consultant, West Suffolk Hospital, UK

Disclosure

 No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this presentation

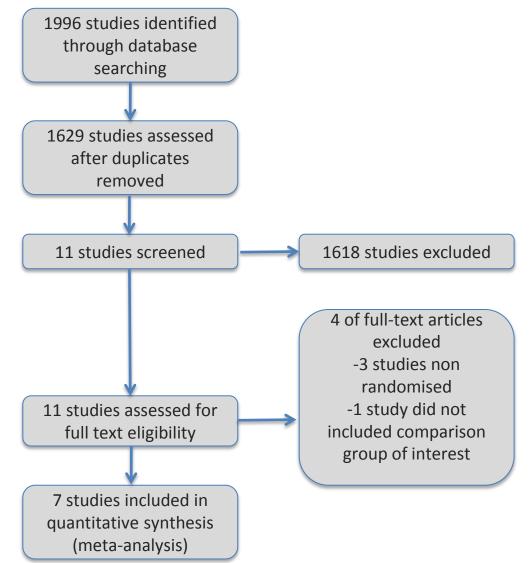
AGGREGATING MARGINAL GAINS

 NJR data comparing 7 and 10 year revision levels of the two most used implants with either MoP or CoP bearing surfaces show better survivorship for the ceramic headsⁱⁱ

		Cumulative % probability revision at -					
Stem/Cup Brand	Bearing surface	7 years	10 years (All hips - 5.60 – 5.91)				
Exeter V40/ Contemporary	МоР	1.91 (1.75 - 2.08)	3.21 (2.64 – 3.91)				
	СоР	1.75 (1.22 – 2.53)	2.62 (1.31 - 5.21)				
Corail/ Pinnacle	МоР	2.33 (2.04 - 2.66)	2.58 (2.19 - 3.04)				
	СоР	1.84 (1.41 - 2.40)	-				

Introduction

- Postulated that Ceramic on Polyethylene has a better survivorship than metal on polyethylene due to:
 - Less polyethylene wear
 - Lower median surface roughness
 - More forgiving scratch profile
 - Better wettability
 - Less corrosion at the head-neck junction
 - Galvanic and fretting

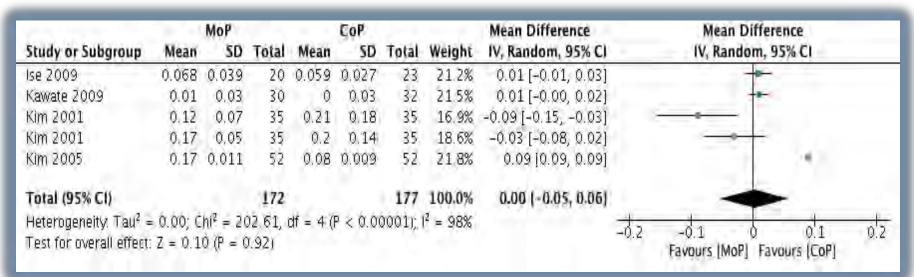

Outcomes

- Primary outcome: Level of polyethylene wear
 - Linear
 - Volumetric
- Secondary outcome
 - Metal ion levels
 - Any cause for revision (excluding infection)

Methods

- MEDLINE, EMBASE, CINALH, the Cochrane Database for Systematic Reviews, The Compendex of Engineering
- Study Inclusion
 - Adult patients >18 years
 - Primary total hip arthroplasty
 - Random allocation to Metal on poly or Ceramic on poly
- Cochrane Tool for Assessment of Risk of Bias
- GRADE guidelines
- Mantel-Haenszel Random-Effects model

Flow Diagram of Study Inclusion



Results

- 7 Randomised trials
- 720 patients, 894 hips
- Average age range 54.0 68.9
- Follow up range 4.04 11 years
- 22, 26 and 28mm heads

Linear wear

- 4 studies
- 219 Patients
- 349 hips

 Not significantly different (MD: 0.00, 95% CI: -0.05-0.06,I²=98%, p=0.92)

Linear wear and Head Size

1 N 10 10 10 10 10	10.00	MoP	100	$\{i_1,\ldots,i_{n-1}\}$	CoP	100	1000	Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
1.5.1 22mm	_					-			
lse 2009	0.068	0.039	20	0.059	0.027	23	21.2%	0.01 [-0.01, 0.03]	+
Kim 2001	0.12	0.07		0.21	0.18			-0.09 [-0.15, -0.03]	
Subtotal (95% CI)			55			58	38.1%	-0.04 (-0.13, 0.06)	+
Heterogeneity. Tau? =	= 0.00; C	$hl^2 = 8.$	35, df -	= 1 (P =	0.004)	; ² = 8	8%		
Test for overall effect:	Z = 0.7	2 (P = 0).47)						
1.5.2 26mm									
Kawate 2009	0.01	0.03	30	0	0.03	32	21.5%	0.01 [-0.00, 0.02]	
Subtotal (95% CI)		0.00	30			32	21.5%	0.01 [-0.00, 0.02]	
Heterogeneity. Not ap	plicable		, P				- construction	Conditional sector.	
Test for overall effect:			(.19)						
		1							
1.5.3 28mm									
Kim 2001	0.17	0.05			0.14	35	18.6%	-0.03 [-0.08, 0.02]	-2-
Kim 2005	0.17	0.011		0.08	0.009			0.09 [0.09, 0.09]	
Subtotal (95% CI)			87			87	40.4%	0.03 (-0.08, 0.15)	
Heterogeneity. Tau ² =	= 0.01; C	hi ^z = 22	2.67, df	= 1 (P	< 0.000	001); ²	= 96%		
Test for overall effect.	Z = 10.5	4 (P = ().59)						
Total (95% CI)			172			177	100.0%	0.00 (-0.05, 0.06)	+
Heterogeneity. Tau ² =	= 0.00; C	$hi^2 = 20$	02.61, (df = 4 (P < 0.00	0001);	$^{2} = 98\%$		-0.5 -0.25 0 0.25 0.5
Test for overall effect:									Favours (experimental) Favours (control)
Test for subgroup difi	ferences:	Chi ² =	0.99. d	f = 2 (P	= 0.61	$ ^2 = 0$)%		ravours texperimental ravours (control)

Not significantly different ($X^2 = 0.99$, $I^2=0\%$, p=0.61).

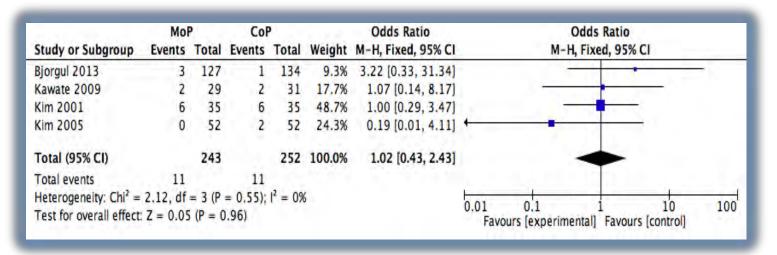
Volumetric Wear

3 studies 182 Patients 306 hips

		МоР			СоР		5	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Kawate 2009	56.3	69.5	30	31.6	42.4	32	24.1%	0.43 [-0.08, 0.93]	
Kim 2001	264.67	267.3	35	473.48	662.7	35	24.7%	-0.41 [-0.88, 0.06]	
Kim 2001	627.01	601	35	730.77	906.7	35	24.8%	-0.13 [-0.60, 0.34]	-
Kim 2005	744.7	712	52	350.8	357	52	26.4%	0.69 [0.30, 1.09]	+
Total (95% CI)			152			154	100.0%	0.15 [-0.36, 0.67]	
Heterogeneity. Tau ² = 0.22; Chi ² = 15.03, df = 3 (P = 0.002); l ² = 80%									— <u> </u>
Test for overall effect:	Z = 0.58	(P = 0.1)	56)						Favours MoP Favours CoP

SMD: 0.15, 95% CI: -0.36-0.67, I²=80%, p=0.56)

Volumetric wear and Head Size


		MoP			CoP		119	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
1.7.1 22mm									
Kim 2001 Subtotal (95% Cl)	264.67	267.3	35 35	473.48	662.7	35 35	24.7% 24.7%	-0.41 [-0.88, 0.06] -0.41 [-0.88, 0.06]	•
Heterogeneity. Not ap	plicable								1.12
Test for overall effect	:Z=1.69	$(\mathbf{P}=0)$	09)						
1.7.2 26mm									
Kawate 2009 Subtotal (95% CI)	56.3	69.5	30 30	31.6	42.4	32 32	24.1% 24.1%	0.43 [-0.08, 0.93] 0.43 [-0.08, 0.93]	
Heterogeneity. Not ap Test for overall effect	and the second second	(P = 0.	10)						
1.7.3 28mm									
Kim 2001	627.01	601	35	730.77	906.7	35	24.8%	-0.13 [-0.60, 0.34]	
Kim 2005	744.7	712		350.8	357	52	26.4%	0.69 [0.30, 1.09]	
Subtotal (95% CI)			87			87	51.2%	0.29 [-0.52, 1.10]	
Heterogeneity. Tau ² = Test for overall effect				1 (P = 0	:008); ²	= 86%			
Total (95% CI)			152			154	100.0%	0.15 [-0.36, 0.67]	+
Heterogeneity. Tau ² =	= 0.22; Ch	$ ^2 = 15$.	03, df	= 3 (P =	0.002);	$ ^2 = 80$	%		- t t t t t
Test for overall effect				0.77					Favours MoP Favours CoP
Test for subgroup dif	ferences: ($hi^2 = 6$.07, df	= 2 (P =	0.05), 1	2 = 67.	1%		avours more ravours cor

Not significantly different ($X^2 = 6.07$, $I^2=67.1\%$, p>0.05)

Metal Ion Levels

- One study
- Chromium and Titanium levels
- MoP had significantly higher serum Chromium levels in comparison to CoP (p=0.015)
- No significant differences in regards to Titanium levels (p=0.67).

Revision Rates4 studies495 patients504 hips

(Odds Ratio: 1.02, 95% CI: 0.43-2.43,I²=0%, p=0.96)

Limitations of Our Paper

- This study only applies to head sizes up to 28mm
- Limited follow-up time and small sample sizes of all the randomized trials included in this review

Conclusions

- No significant difference in linear or volumetric wear regardless of head size between the 2 groups
- No significant difference in revision rate between MoP and CoP
- Factors other than polyethylene wear may be important in determining choice of bearing surface

References

- B<u>ozic KJ</u>, <u>Ong K</u>, <u>Lau E</u> et al.
- 7th Annual Report of the NJR available onli Risk of complication and revision total hip arthroplasty among Medicare patients with different bearing surfaces. Clin Orthop Relat Res. 2010 Sep;468(9):2357-62
- ne http://www.njrcentre.org.uk/njrcentre/AbouttheNJR/Publicationsandreports/Annualreports/tabid/86/Default.aspx
- Australian Orthopaedic Association Annual Report 2014, available online <u>https://aoanjrr.dmac.adelaide.edu.au/annual-reports-2014</u>
- Annual Swedish Joint Registry 2012 available online http://www.shpr.se/en/Publications/DocumentsReports.aspx
- [Roy ME, Whiteside LA, Magill ME, Katerberg BJ, Reduced wear of cross-linked UHMWPE using magnesia-stabilized zirconia femoral heads in a hip simulator. Clin Orthop Relat Res. 2011 Aug;469(8):2337-45.
- Galvin A, Brockett C, Williams S, Hatto P, Burton A, Isaac G, Stone M, Ingham E, Fisher J Comparison of wear of ultra-high molecular weight polyethylene acetabular cups against surface-engineered femoral heads. Proc Inst Mech Eng. 2008 Oct;222(7):1073-80.
- Saikko V1, Ahlroos T, Calonius O, Keränen J., d better wettability wear include .orrosion a the head/ neck taper junction and the less surface polyethylene wear at the beWear simulation of total hip prostheses with polyethylene against CoCr, alumina and diamond-like carbon.
- Biomaterials. 2001 Jun;22(12):1507-1515
- Cuckler JM, Bearcroft J, Asgian CM. Femoral head technologies to reduce polyethylene wear in total hip arthroplasty. Clin Orthop Relat Res. 1995;317:57–63.
- Cuckler J, Bearcroft J, Asgian C, Femoral Head Technologies to Reduce Polyethylene Wear in Total Hip Arthroplasty. Clin Orth & Relat Res: Aug 1995; 317, pp. 57-63 (33 ref.)
- Kim YH. Comparison of polyethylene wear associated with cobalt-chromium and zirconia heads after total hip replacement: a prospective, randomized study. J Bone Joint Surg Am. 2005;87:1769–1776. doi: 10.2106/JBJS.D.02572.
- High rate of revision and a high incidence of radiolucent lines around Metasul metal-on-metal total hip replacements
- Results from a randomised controlled trial of three bearings after seven years, Bone Joint J July 2013 vol. 95-B no. 7 881-886
- Kim YH. Comparison of polyethylene wear associated with cobalt-chromium and zirconia heads after total hip replacement. A prospective, randomized study. J Bone Joint Surg Am. 2005 Aug;87(8):1769-76
- Kraay MJ, Thomas RD, Rimnac CM, Fitzgerald SJ, Goldberg VM. Zirconia versus Co-Cr femoral heads in total hip arthroplasty: early assessment of wear. Clin Orthop Relat Res. 2006 Dec;453:86-90.
- Rasquinha VJ, Ranawat CS, Weiskopf J, Rodriguez JA, Skipor AK, Jacobs JJ. Serum metal levels and bearing surfaces in total hip arthroplasty. J Arthroplasty. 2006 Sep;21(6 Suppl 2):47-52.
- Kawate K, Ohmura T, Kawahara I, Tamai K, Ueha T, Takemura K. Differences in highly cross-linked polyethylene wear between zirconia and cobalt-chromium femoral heads in Japanese patients: a prospective, randomized study. J Arthroplasty. 2009 Dec;24(8):1221-4
- Ise K, Kawanabe K, Jiro Tamura et al. Clinical Results of the Wear Performance of Cross-Linked Polyethylene in Total Hip Arthroplasty; A Prospective Randomized Trial , The Journal of Arthroplasty Vol. 24 No. 8 2009
- Kim Y H, Kim J S, Cho S H. A comparison of polyethylene wear in hips with cobalt-chrome or zirconia heads. J Bone Joint Surg (Br) 2001; 83 (5): 742-5
- Images:
- http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/2012/2/28/1330439186768/Hip-prosthesis-007.jpg
- https://tinderboxconsulting.files.wordpress.com/2012/08/team_gb_cycling.jpg

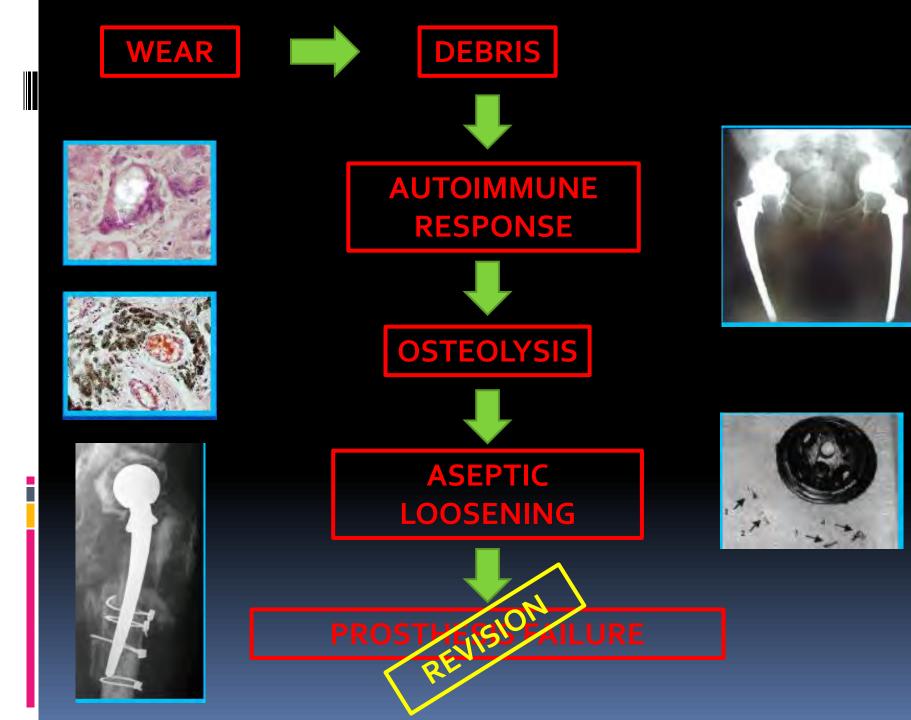
Thank You / Grazie

Please address all correspondence to:

- Mr Amit Atrey
- amitatrey@doctors.net.uk

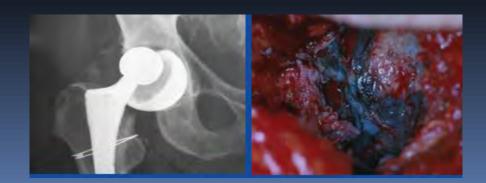
Policlinico Agostino Gemelli Università Cattolica del Sacro Cuore

Gemelli


WEAR IN TOTAL HIP ARTHROPLASTY USING CERAMIC HEAD: 10 YEARS MAXIMUM FU.

G. Malerba, C. De leso, G. Logroscino, F. Barberio, V. De Santis, G. Maccauro

The increasing arthroplasties in necessary to in characteristics i longer implant s


Ceramic materials are currently the landmark in the evaluation of wear characteristics.

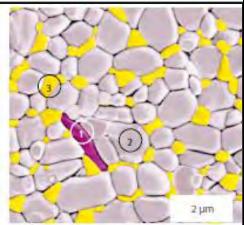
FAILURE CAUSES

- Technical errors
- Particle disease aseptic loosening osteolysis periprosthetic fracture
- Infection

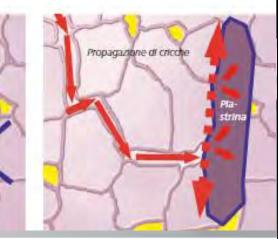
- Instability
- Implant breakage

Wear: related to the friction between surfaces with different coefficients:

- Metal polyethylene
- Metal metal
- Ceramic polyethylene
- Ceramic ceramic


<u>BIOLOX®delta</u>

Prodotti medici CeramTec


- 1. platelets with crack-stopping function
- 2. aluminum-oxide particle
- 3. zirconium-oxide particle

2 pm

Fenta: CorumTax: GmbH

Features & Benefits

Features	Benefits
Available in 28, 32, and 36mm femoral head sizes	Treats a wide variety of patient anatomies
ARTICUL/EZE® 12/14 Head Tapers available in three neck lengths, +1.5, +5.0, and +8.5	Designed to Restore Biomechanics
S-ROM $^{\textcircled{s}}$ 11/13 head tapers available in three neck lengths, +0, +1.5, +3 and +6	Designed to Restore Biomechanics
BIOLOX delta material contains 74% alumina & 25% zirconia	Hardness of alumina (low wear) Fracture toughness; due to resistance to fracture of zirconia ²
Latest generation of ceramic material	Improved wear on polyethylene vs. cobalt chrome heads ¹ Improved burst strength compared to alumina ceramic heads ² .

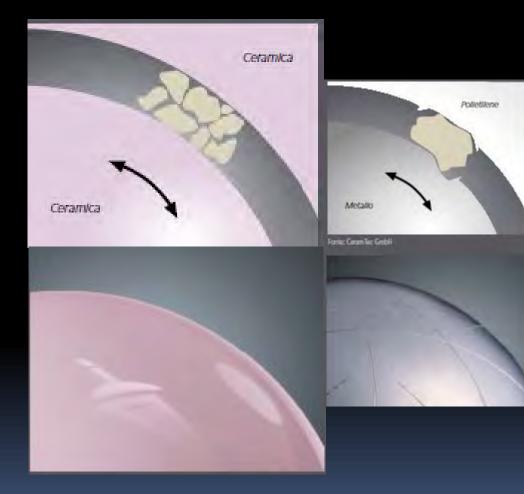
References:

 Liao, Y.-S., K. Greer, et al. "Effects of Head and Roughness on the Wear of 7.5 Mrad Crosslinked-Remelted UHMWPE Acetabular INserts." Poster No 1901, 54th Annual Meeting of the Orthopaedic Research Society.
 Z.Rack, R. and H.G. "Pfair," A low Ceramic Material for Orthopedics." Proceedings of the 5th International CeramTec Symposium, G. Thieme.

2. Rack, R. and H.G. Pfaff. "A New Ceramic Material for Orthopedics." Proceedings of the 5th International CeramTec Symposium, G. Thieme-Verlag, Stuttgart, 2000: 141-145. 82% alumina

Propagazione di cricci

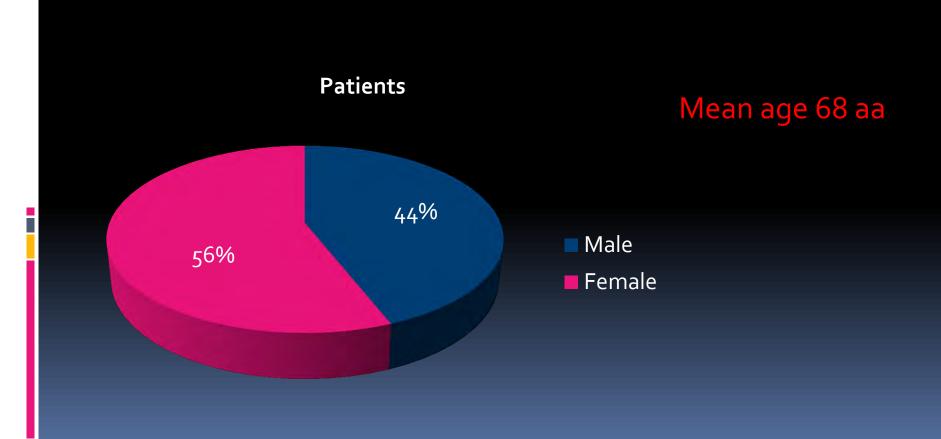
Ossido di alluminio

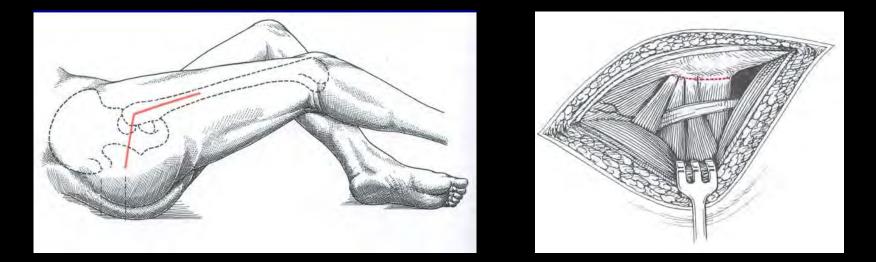

• 17% tetragonal zirconia particles

Cissido di zirconio

- 0,5% strontium aluminate
- 0,5% chromium oxide

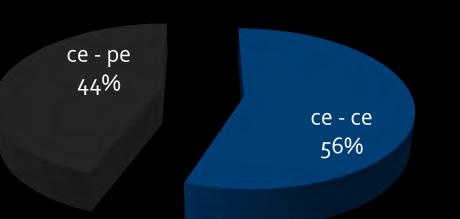
FEATURES


- Extreme Hardness
- Exacting Sphericity
- Optimal Clearance
- Nearly no Third-Body Wear
- Superior Surface Smoothness
- Scratches
- Excellent Biological Behaviour
- Supreme Wettability

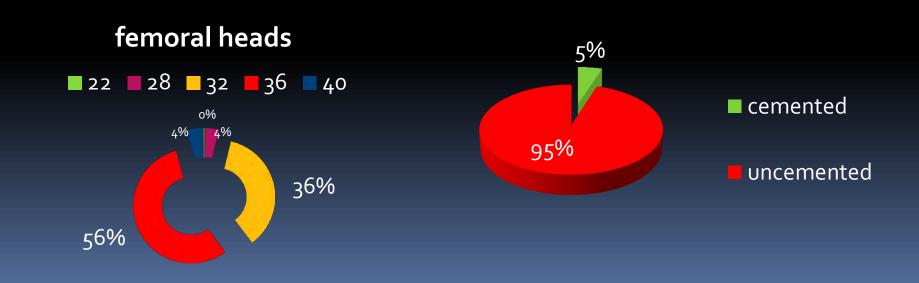

MATERIALS AND METHODS

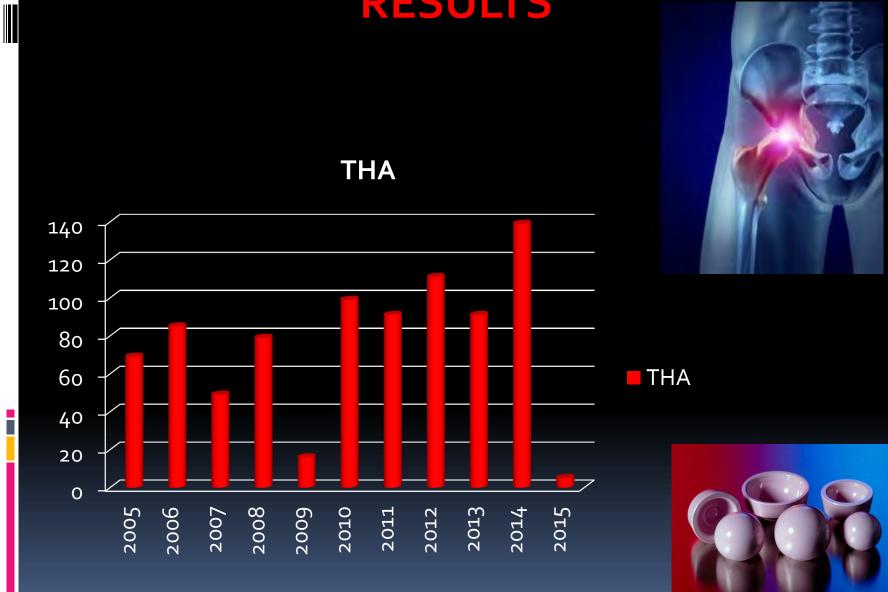
From 2005 to 2015 834 patiens have been selected

MATERIALS AND METHODS


 Telephone interview for the clinical evaluation and the degree of satisfaction (LEQUESNE INDEX)

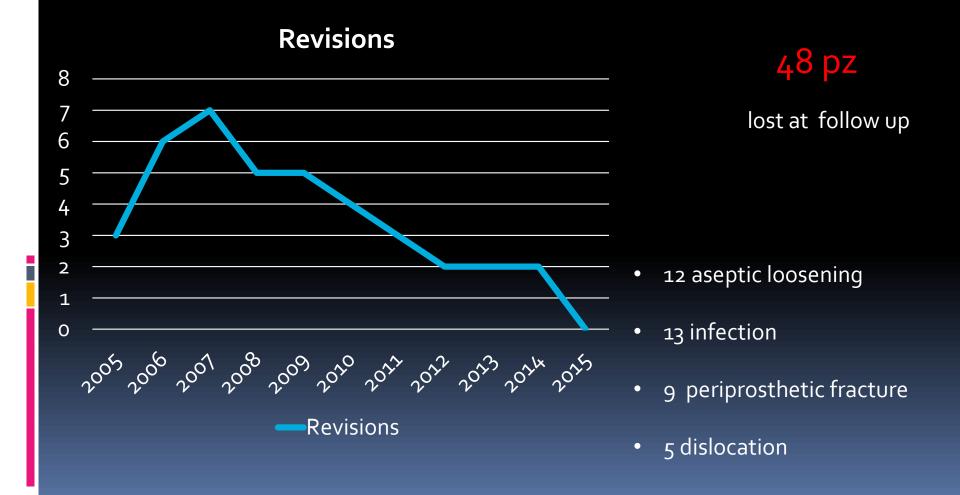
Lequesne MG. The algofunctional indices for hip and knee osteoarthritis. J Rheumatol 1997; 24: 779-81


- Verbal numerical rating scale of pain VNS
- Radiographic evaluation of wear



coupling

18 types of stem (5 stemless)



RESULTS

95[%] Survival rate of the implants in 10 years

LEQUESNE INDEX

DISCOMFORT PAIN

- Night sleep
- Morning stiffness
- Pain in walking (> 30 min)
- Pain on movement
- Pain sitting

DAILY ACTIVITIES

- <u>Socks wearing</u>
- <u>Bend down</u>
- <u>Climbing stairs (<25 steps)</u>
- <u>Getting in the car</u>

MAXIMUM DISTANCE COVERED

- Max Walkable distance
- Use of crutches

CE – CE 21
CE – PE 20

RESULTS SLIGHTLY BETTER IN CERAMIC ON CERAMIC COUPLING

ANALOGOUS RESULTS IN BOTH COUPLINGS

RADIOGRAPHIC EVALUATION

ANALOGOUS RESULTS IN BOTH COUPLINGS

DISCUSSION

No differences found in bearing related hip survivorship at 10-12 years follow-up between patients with ceramic on highly crosslinked polyethylene bearings compared to patients with ceramic on ceramic bearings. Epinette JA, Manley MT. J Arthroplasty. 2014 Jul;29(7):1369-72

Ceramic-on-ceramic bearings in young patients: outcomes and activity levels at minimum ten-year follow-up. Chana R, Facek M, Tilley S, Walter WK, Zicat B, Walter WL. Bone Joint J. 2013 Dec;95-B(12):1603-9

CONCLUSION

the use of new material design and / or the improvements of material characteristics can produce benefits even in longer term

The ceramic components represent the gold standard, especially in young and active subjects with excellent results at adistance for functional outcomes and wear

CONCLUSION

The use of the ceramic head, whether it is coupled to a polyethylene insert or ceramic itself, certainly gives excellent results at 10 years follow up

The ceramic on polyethylene coupling can be a viable alternative to ceramic on ceramic, also considering its lower cost and the theoretical lower risk of breakage

Functional and clinical Outcome of THA using Large diameter ceramic couples

R Raman, S Gopal, A Nisar, V Johnson, C Shaw Academic Department of Orthopaedics Hull and East Yorkshire Regional Arthroplasty Center (HEYRAC) Hull York Medical School

Changing Patients

Increasing number of old AND young patients

World population > 65 yrs is growing ~ 1% per year

Obesity increasing (adults and children)

WHO: BMI > 25

More and more young patients

Increasing arthrosis in all age groups

Crowninshield RD, Hip Int 2006

PE wear...

- Main reason for aseptic loosening
- of acetabular and femoral components
- Aseptic Loosening 75% of all revision cases Swedish National Hip Arthroplasty Register
- Finnish Arthroplasty Register: PE wear is limiting factor for survival of THA (patients < 55 a)
- Eskelinen A et al., Acta Orthopaedica 2006; 77 (1): 57-70
- Mean wear rate of 0,2 mm/a results in a 4 (!) fold higher risk of osteolysis
 - Orishimo et al. JBJS-Am 85, 2003

Revision THA -Indications

Aseptic Loosening !!! (Wear related)

	No.	%	No.	%	No.	%	No.	%	No.	%
Indications for single stage	5,405		5,968		6,191		5,955		23,519	
Aseptic loosening	3,419	63%	3,628	61%	3,675	59%	3,340	56%	14,062	60%
Lysis	1,147	21%	1,095	18%	1,081	17%	913	15%	4,236	18%
Pain	1,072	20%	1,207	20%	1,692	27%	1,847	31%	5,818	25%
Infection	103	2%	97	2%	167	3%	171	3%	538	2%
Indications for stage one of a two stage revision	374		392		440		497		1,703	
Aseptic loosening	79	21%	72	18%	85	19%	74	15%	310	18%
Lysis	57	15%	46	12%	58	13%	46	9%	207	12%
Pain	64	17%	57	15%	84	19%	89	18%	294	17%
nfection	300	80%	299	76%	355	81%	399	80%	1,353	79%

Registry data

Table HT11: Primary Total Conventional Hip Replacement by Reason for Revision

Reason for Revision	Number	Percent
Loosening/Lysis	1902	30.1
Prosthesis Dislocation	1634	25.9
Infection	1061	16.8
Fracture	925	14.6
Metal Sensitivity	133	2.1
Pain	132	2.1
Leg Length Discrepancy	82	1.3
Malposition	68	1.1
Implant Breakage Acetabular	59	0.9
Implant Breakage Stem	53	0.8
Incorrect Sizing	43	0.7
Implant Breakage Hip Insert	38	0.6
Instability	33	0.5
Wear Hip Insert	25	0.4
Implant Breakage Head	23	0.4
Other	110	1.7
TOTAL	6321	100.0

vint Replacement Registry

Primary THR - CoC

 Single centre – Regional Arthroplasty unit- Prospective study

3 surgeon

0

1219 consecutive hips (1012 patients)

• All CoC couples

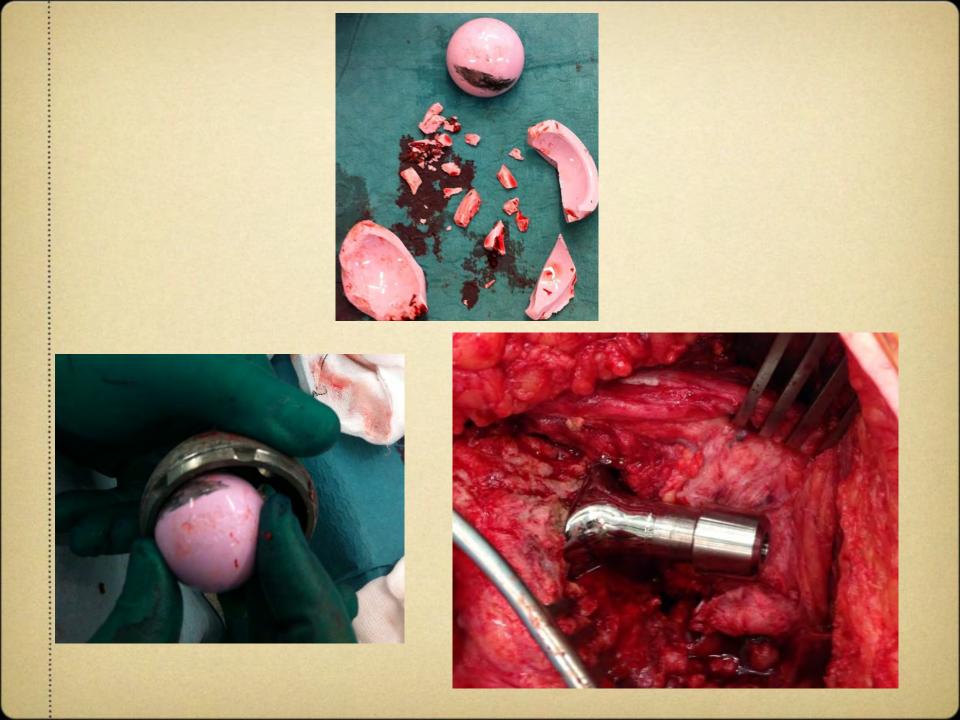
Results

- Mean Age: 64.9 yrs (11-82 yrs)
- Min Follow up 5 yrs (62-96 months)
- Biolox Delta Ceramic Liners and Biolox Delta ceramic heads
- Detailed clinical and radiological analysis

Clinical Results

- Acetabular shell : 44-62mm
- 36mm CoC used in 92%
- 1 Dislocation (Frac NOF)
- Mean time to recreational sports: 3.9 months

Results


1 Dislocations

- 1 ceramic frac / 1 squeaking
- HHS Improved from 61 to 95 (88-97)
- OHS -46 (39-47)
- Euroqol EQ5 D:
 - 0.84 _health thermometer

Revisions

• 1 for infection,

- 4 for fracture 1 intra op and 3 peri pros after trauma
- 1 cup revision Liner fracture
- None for aseptic loosening/osteolysis

• 13 yrs – Female AVN(SUFE)

• Reliable and safe bearing

• Functional demand

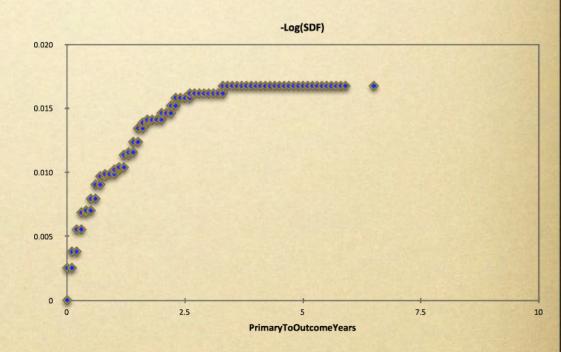
Frac NOF
36/50 shell
Better ROM
Lower risk of dislocation

Survival

• At 8 yrs

• For aseptic loosening: 99.3%

• Overall: 98.1%

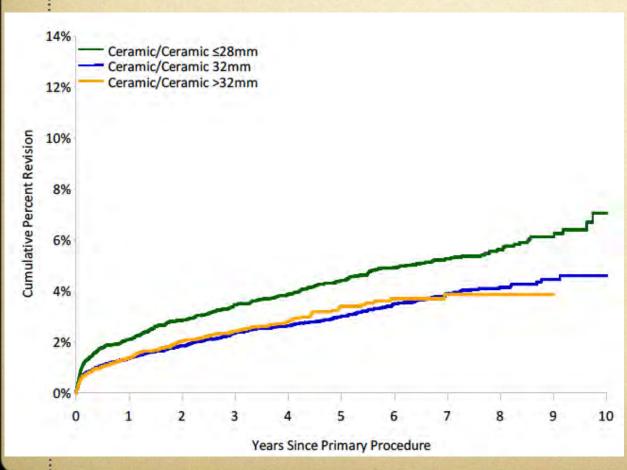

NJR data for CSF Plus - COC

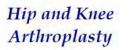
Patients 7135 Max follow up 6.5 years

revisions 96

Revision rate at 3 years 1.6%

Revision rate at 5 years 1.7%




Head Sizes...

32mm: 132 - 1 problem (squeaking)

36mm: 791 - 1 problem (fracture of liner)

40mm: 83 - 0 problems

ANNUAL REPORT

2011

. National Joint Replacement Registry

Cumulative Percent Revision of Ceramic/Ceramic Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis OA)

Conclusion

- CoC Less risk of revision, osteolysis, infection, dislocation, aseptic loosening, debris disease
- Excellent clinical and functional outcome in this series
- Longer term f/u needed for this bearing to compliment the mid term results

Mis-seating of Trident ceramic acetabular liners: a 6-year audit of incidence and revision rate in South Devon, UK

International Combined Meeting, British Hip Society/Societa Italiana dell'Anca Milan, Italy 26th November 2015

Tom Law, Registrar, Trauma & Orthopaedics Andrew Roberton, Core Surgical Trainee Mr Mark Ashworth, Consultant Orthopaedic Surgeon

South Devon Healthcare Foundation Trust, Torquay, UK

Background

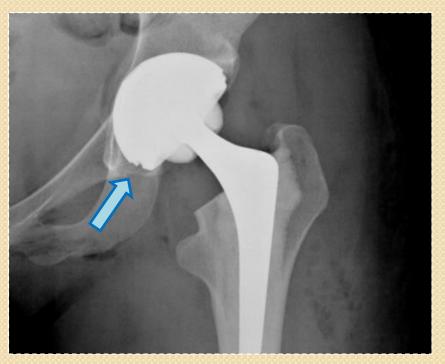
- Trident uncemented ceramic acetabular THR component in 2 parts
 - Metal shell, hydroxyapatite coated
 - Metal-backed ceramic liner (ceramic alone brittle)
- Shell implanted first, liner inserted separately
 - Acetabulum under-reamed for press fit

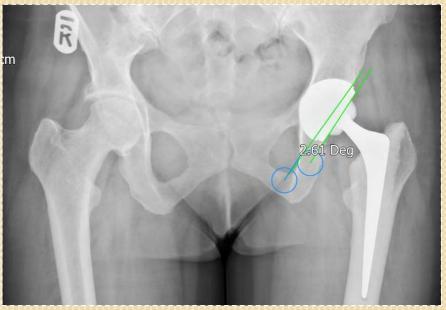
Component mechanics

- Taper locking mechanism with rim castellation for rotational control
- Mis-seating of liner leads to malalignment of cup

Aims – to discover:

- Rate of mis-seating of these components in 2 local hospitals
 - Torbay (NHS) and Mount Stuart (private)
 - 6 year study period (2008-2014)
 - Multiple surgeons
- Revision rate
 - Is malseating related to early revision?

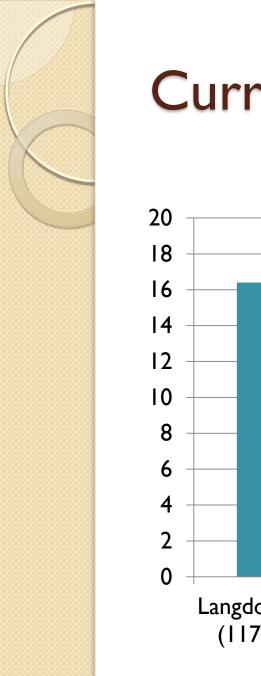



Method

- All Trident ceramic uncemented acetabular components in study period identified
 - Theatre data collection system
- Same database searched for revision procedures
- Post-op AP and lateral digital radiographs reviewed for correct position
 - Iyr follow up views (if available) also reviewed
- Incorrect positioning:
 - Gap seen between metal layers
 - >I degree misalignment between liner and shell metal parts

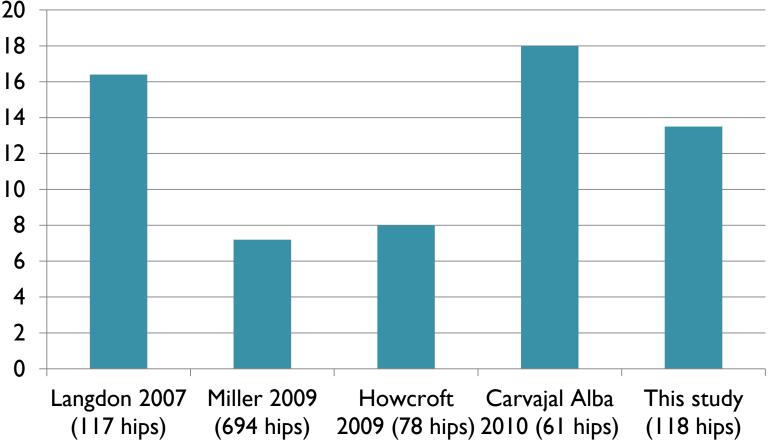
Gap between liner and shell

Misalignment of liner in shell by $> 1^{\circ}$


Radiographic criteria

Results

- II8 hips in I08 patients from August 2008 to August 2014
- 16 not correctly seated post op (13.5%)
 - Of these, 3 were correctly seated at lyr
 - 27% rate of subsequent seating
 - 6 still not seated, 2 no follow-up views available
- One revision
 - For painful psoas impingement
 - Liner correctly seated
- One dislocation at I month post op
 - Liner correctly seated


Current state of knowledge

- Langdon AJ et al, JBJS (Br) 2007
 - II7 hips, I6.4% malseated
 - I revision for malseating
- Miller AN et al, Clin Orthop Relat Res 2009
 - 694 hips, 7.2% malseated
- Howcroft DWJ et al, Clin Orthop Relat Res 2009
 - 78 hips, (primary and revision)
 - 8% malseated
 - No revisions for any cause, 40% subsequent seating rate
- Carvajal Alba JA et al, Orthopaedics 2010
 - 61 hips, 18% malseated or suspicious
 - No revisions or adverse events
- Nunag P et al, Hip International 2012
 - 30 hips, 66% malseated (using EBRA digital method to examine cup migration)

Current state of knowledge

% malseated

Discussion

- Surgical technique involves check of position and possibly seating before reduction of hip
 - Technique varies between surgeons
 - Mis-seating occurs despite this
- Similar problem reported elsewhere
 - Variable rate, from 7% to 18%
 - Some centres revised hips for mis-seated component
- No clear correlation between malseating and revision

Limitations

- Length of follow up
 - Short considering lifetime of components
 - Current studies have similar follow up
- Biomechanics of implant malseating not clear
 Shells deform on implantation, time-dependent
- Diagnosis of malseating difficult
 - No standard method
 - Plain radiography operator-dependent
 - Non metal-backed liner not seen on radiographs
- Restrospective study

Plan

- Modify surgical technique for Trident ceramic acetabular components
 - Position check documented in operation note
- Senior author now using different liner (polyethylene) in most cases
- Longer follow up needed
 - All malseated patients will be recalled
 - 20 year follow up planned

References

- Markel D, Day J, Siskey R, Liepins I, Kurtz S, Ong K. Deformation of metalbacked acetabular components and the impact of liner thickness in a cadaveric model. *Int Orthop.* 2011 Aug;35(8):1131-7
- Miller AN, Su EP, Bostrom MP, Nestor BJ, Padgett DE. Incidence of ceramic liner malseating in Trident acetabular shell. *Clin Orthop Relat Res.* 2009 Jun;467(6):1552-6
- Carvajal Alba JA, Schiffman ED, Scully SP, Parvataneni HK. Incomplete seating of a metal-backed alumina liner in ceramic-on-ceramic total hip arthroplasty. *Orthopedics* 2010 Jan;33(1):15.
- Langdown AJ, Pickard RJ, Hobbs CM, Clarke HJ, Dalton DJ, Grover ML. Incomplete seating of the liner with the Trident acetabular system: a cause for concern? J Bone Joint Surg Br. 2007 Mar;89(3):291-5.
- Howcroft DWJ, Qureshi A, Graham NM. Seating of Ceramic Liners in the Uncemented Trident Acetabular Shell: is there really a problem? *Clin Orthop Relat Res* 2009 467: 2651-2655

Is wear of Dual Mobility Cup (DMC) lower or upper than Conventional Cup ?

ANALYSIS OF AN *IN VITRO* STANDARD TEST

André FERREIRA – Clinique du Parc – Lyon – France

Thierry ASLANIAN – Nicolas MOUTTON – Groupe Lépine – Genay – France Jacques Henry CATON - Clinique Emilie de Vialar – Lyon- France Jean Louis PRUDHON – Clinique des Cèdres – Echirolles

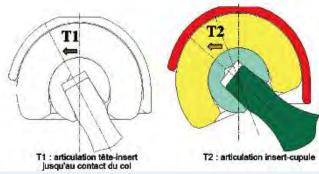
Disclosures

J.H. CATON

- Consultant & royalties Groupe Lépine
- Royalties Ceraver
- J.L. PRUDHON
 - Consultant & royalties Groupe Lépine
 - Royalties Dedienne Santé
- A. FERREIRA
 - Consultant & Royalties Groupe Lépine
 - Consultant & Royalties Lima Corporate
- T. ASLANIAN N. MOUTTON
 - Ph.D. employed Groupe Lépine

INTRODUCTION

- Hip dislocation remains major short complication after THA
- Polyethylene (PE) wear remains major long term complication
- Dual Mobility Cup is an effective method to prevent dislocation :
 - At 10 Y/FU :
 - Dislocation rate : 0.95 % DMC vs 8.5 % Cup Standard
 - Revision rate : 2.1 % DMC vs 10 % Cup Standard
- But wear is still on debate...

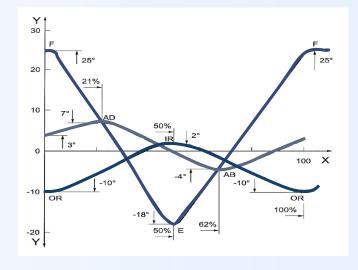


No visible wear at 10 Y/FU

INTRODUCTION

 The specific DMC design, with its large head PE functionning with 3 articulations (small, large and 3rd) can raise the suspicion of an increase « double wear » with 2 main issues:

osteolysis and loosening.


 Wear evaluation of DMC is necessary by experiments and clinical studies.

EXPERIMENTAL STUDY MATERIAL & METHODS

 A gravimetric standardized method (ISO 14242-1) is used to measure wear at 500 000, 1, 2, 3, 4 et 5 millions cycles.

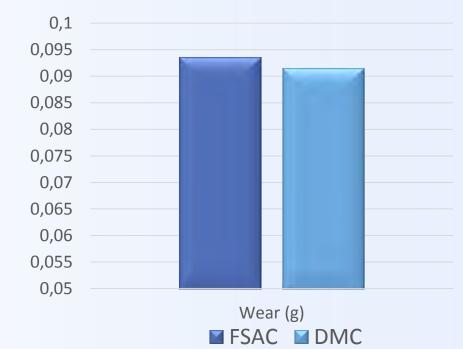
ISO14242-1 (2012) - Implants for surgery – Wear of total hipjoint – P1: Loading and displacement parameters for wear testing machines and corresponding environmental conditions for test

EXPERIMENTAL STUDY MATERIAL & METHODS

- Our objective was to compare DMC wear (loss of mass) to a Fixed Single Articulation Cup (FSAC) wear in the same experimental conditions.
 - 2 cups DMC and FSAC are placed on a hip wear simulator with a normal configuration (30° inclination) according to international standards ISO 14242-1 and 14242-2 with lubricant liquid (calf serum at 30+/- 2 g/l of protein at 37° +/- 2 °C)
 - Without any blocage during the complete process.

RESULTS

Loss of mass at 5 millions cycles :


- Alumina ceramic (Céralepine[™]) 28 mm Head
- Conventional UHMWPE gamma sterilized

Fixed Standard Articulation Cup (FSAC) : 93,6 mg ie 18,7 mg/million cycles

Dual Mobility Cup (DMC) : 91,5 mg ie 18,3 mg/million cycles

Due to the volumetric mass (or density) of the UHMWPE (0,94 mm³/mg), the calculated volume loss is for :

- FSAC: 19,9 mm³/million cycle
- DMC: 19,5 mm³/million cycle

DISCUSSION (Wear testing machines)

Author	Reference	Material	Test Method	Results (Wear mg/ Million cycle)
D'Lima	J Orthop Res 2003	FSAC CoCr/UHMWPE	Non-standardized Gravimetric	15,7 mg/MC for Gamma sterilization
		FSAC CoCr/UHMWPE	Non-standardized Gravimetric	12.5 mg/MC for e-beam sterilization
Netter	J Arthroplasty 2014	DMC Steel/ UHMWPE/CoCr	Virtual : Finite Element Analysis	13.7 – 27.9 mm ³ /MC ie 14 – 28.8 mg/MC (d=0.97)
Stulberg	Orthopedics 2011	DMC Ceramic/UHMWPE/CoCr	Non precised	20.9 mm³/MC ie 21.5 mg/MC (d= 0.97)
Herrera	55th Annual meeting of the Orthop Res. Soc.	DMC CoCr/UHMWPE/CoCr	Non-standardized Gravimetric	21.4 mg/MC
Our study		FSAC Alumina Ceramic/UHMWPE	Standardized Gravimetric (compliance ISO 14242-1)	18.7 mg/MC
		DMC Alumina Ceramic/UHMWPE/CoCr	Standardized Gravimetric (compliance ISO 14242-1)	18.3 mg/MC

DISCUSSION From loss of mass to penetration? Gravimetric wear (loss of mass) by comparing with a statically loaded specimen (eliminate effect of creep alone) UHMWPE density (0,94) Calculate wear volume d: calculate head penetration r : head radius **Head diameter** R : insert radius

 Calculate depth that head penetrates into liner (creep and wear) by using the formula

•
$$V = \frac{\pi d^2 (4 dR - 12 rR + d^2 - 4 rd)}{12 (R + d - r)}$$

DISCUSSION « clinical » wear...

- Direct measurement of alterations of the curvature radii compared to with theorical dimensions
 - P. ADAM et al. (in Rev Chir Orthop 2005 vol. 91 : 627-36) after examination of 40 retrieved PE implant BOUSQUET type is of 54,3 mm3/year
 - M. WROBLEWSKY (in Clin. Orthop 1986 Vol.211 : 30-35):
 30 to 80 mm3/year for Charnley LFA at 15 to 21 Y/FU

CONCLUSION

- Under same conditions (loading, cycles, sterilization, material and surface roughness), the gravimetric wear (for PE conventional) is comparable between a conventional (FSAC) and a dual mobility cup (DMC).
- After our study, alone in compliance with ISO 14242-1, it is possible to conclude that :
 - Dual Mobility Cup (DMC) wear is in the same order than those of a Fixed Single Articulation Cup (FSAC).

=> Correlated to our clinical study at 10 years FU minimum of DMC what has not demonstrated evidence of wear and osteolysis.

Rizzoli Orthopaedic Institute I Orthopaedic and Trauma Clinic Bologna University

Systemic Toxicity Indiced by Metalons in Patients with Hip Resurfacing

G. Tedesco, M. Cadossi, L. Savarino, A. Mazz A. Sambri, N. Baldini, S. Giannin

HIP RESURFACING

ADVANTAGES

- Large-diameter femoral head: higher stability, highimpact sport allowed
- Femoral bone-stock preservation

- Restoring of the geometrical parameters of the hip
- Physiological load transfer to the proximal femur

HIP RESURFACING

DISADVANTAGES

- Minor survival vs THR?
- Metal ion release
- Pseudotumor formation

 Revisions more complex with worse functional results

METAL ION RELEASE

- It is still unknown whether lower ion levels over a prolonged period may increase cancer risk
- In vitro studies have found relationship between metal ions and inflammation, cytotoxicity, altered lymphocyte concentrations, and irreversible chromosomal damage

Davies AP et al. JBJS Br 2005 Hart AJ et al. JBJS Br 2009 Savarino L et al J Biomed Mater Res 2000

METAL ION RELEASE

BMJ 2012;345:e4646 doi: 10.1136/bmj.e4646 (Published 25 July 2012)

Page 1 of 8

RESEARCH

Risk of cancer with metal-on-metal hip replacements: population based study

OPEN ACCESS

Keijo T Mäkelä orthopaedic surgeon¹, Tuomo Visuri associate professor², Pekka Pulkkinen

Several clinical studies, matching joint arthroplasty and cancer registries, reported no relationship between cancer and long lasting metal implants

STUDY

We investigated the correlation existed between Co and Cr serum levels and the serum content of:

- 8-hydroxydeoxyguanosine (8-OHdG), which is considered the most reliable biomarker in the estimation of reactive oxygen species (ROS)-induced DNA damage
- Circulating free DNA (cfDNA), as a surrogate marker for DNA tumor-specific alterations
- ✓ hypoxia-inducible factor-1 α (HIF-1 α), as a sign of hypoxic state

MATERIALS AND METHODS

STUDY GROUP

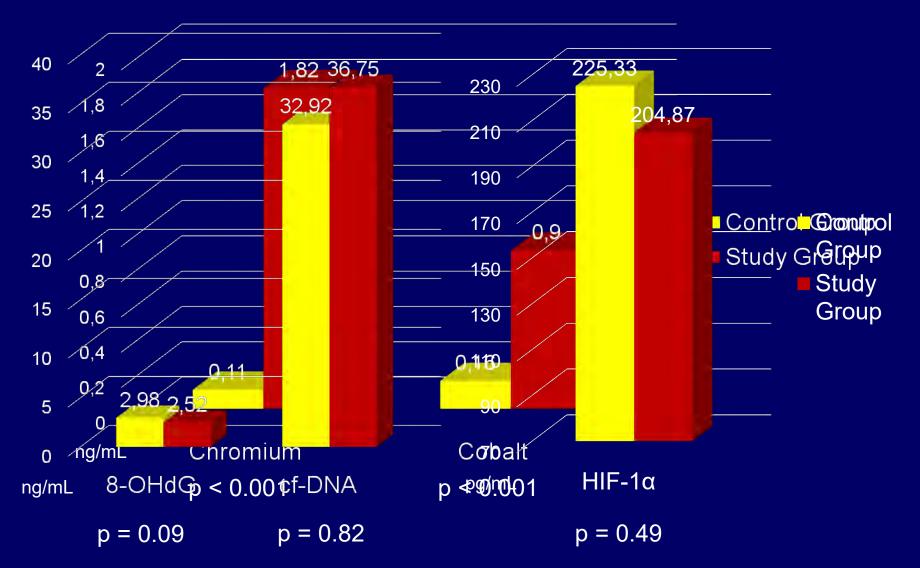
- 22 patients (15 men, 7 women) implanted with unilateral Birmingham Hip Resurfacing
- Osteoarthritis
- Mean follow-up: 8.7 year

CONTROL GROUP

- 21 subjects (11 men, 10 women) waiting for hip resurfacing
- Osteoarthritis
- Without metal implants within the body

RESULTS

Parameter	Presurgery subjects $(n = 21)$	MOM-HR (<i>n</i> = 22)	<i>p</i> -Value ^a
Gender			
Male (number of patients)	11	15	0.4
Female (number of patients)	10	7	0.4
Age (years)	55.8 (40-76)	53.2 (26-73)	0.4
Follow-up (months)		104.2 (96-132)	
Cup inclination angle (°)	8	45.1 (35-55)	
Acetabular cup diameter (mm)	-	56.2 (46-62)	
Head diameter (mm)		48.9 (38-54)	
BMI (kg/m ²)	25.8 (20.7-32.8)	25.1 (17.0-32.0)	0.86
UCLA scale ¹⁹	5.1 (2-9)	7.3 (3-10)	< 0.001
Harris hip score (points) ²⁰	64.4 (49-88)	94.7 (69.7-100)	0.005


Values are expressed as mean, and range (in brackets).

^a Calculated with Mann-Whitney U test (p < 0.05 is considered statistically significant).

- The groups were matched for age, sex, and BMI
- HHS and UCLA activity level were significantly different between groups
- Prosthesis were well positioned

RESULTS

TUMMET MARKERS/EEVELS

CONCLUSION

- There are no scientific or epidemiological data that indicate a risk of carcinogenesis or teratogenesis related to the use of a hip resurfacing
- Rise in chronic low level of metal ions (~ 2 ng/mL) does not seem to be clinically relevant
- Further studies with a larger sample size should be performed in order to define the clinical relevance of biomarkers increase especially in younger subjects, where a chronic moderately elevated exposure has to be faced

CING SURGICAL STANDARDS

What is the natural history of asymptomatic pseudotumours associated with metal-on-metal hip resurfacings?

GS Matharu, SJ Ostlere, HG Pandit, DW Murray

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK

International Combined Meeting 2015 British Hip Society and the Società Italiana dell'Anca Milan, Italy

Conflicts of interest

GSM

- Fellowships: (1) The Royal College of Surgeons of England and The Arthritis Research Trust, (2) Arthritis Research UK
- Research grants: (1) The Orthopaedics Trust, (2) The Royal Orthopaedic Hospital Hip Research and Education Charitable Fund

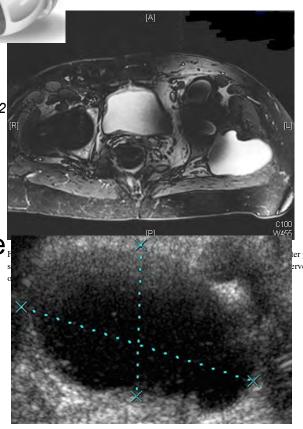
SJO No conflicts of interest

HGP

- Paid speaker: Zimmer Biomet
- Research grants: (1) Zimmer Biomet, (2) Stryker

DWM

- Royalties & paid speaker: Zimmer Biomet
- Research grants: (1) Zimmer Biomet, (2) Stryker


Background

Metal-on-metal (MoM) hip patients

Regular follow-up for most

Asymptomatic pseudotumours

- Prevalence = 4% to 61% Kwon 2011, Williams 2011, Hart 2012
- Management dilemma
 - Especially if no bone or soft-tissue damage
- Authorities (UK MHRA, Europe, US FDA)
 - No robust thresholds for revision

Unclear natural history of asymptomatic pseudotumours

3 Longitudinal studies Almousa 2013, van der Weegen 2013, Hasegawa 2014

Clinical Ortho

and Related Re

- Small 10 to 24 MoM hips
- Short follow-up mean 0.7 to 2.1 years

Clin Orthop Relat Res DOI 10.1007/s11999-013-2944-4

SYMPOSIUM: 2012 INTERNATIONAL HIP SOCIETY PROCEEDINGS

The Natural History of Inflammatory Pseudotumors in Asymptomatic Patients After Metal-on-metal Hip Arthroplasty

Sulaiman A. Almousa MBBS, Nelson V. Greidanus MD, MPH, Bassam A. Masri MD, Clive P. Duncan MD, MSc, Donald S. Garbuz MD, MHSc Longitudinal Magnetic Resonance Imaging of Pseudotumors Following Metal-on-Metal Total Hip Arthroplasty

Contents lists available at ScienceDirect

The Journal of Arthroplasty

journal homepage: www.arthroplastyjournal.org

THE JOURNAL OF

CALIKS

Masahiro Hasegawa, MD, PhD, Noriki Miyamoto, MD, PhD, Shinichi Miyazaki, MD, PhD, Hiroki Wakabayashi, MD, PhD, Akihiro Sudo, MD, PhD

Progression of pseduotumours was common

To manage patients with asymptomatic pseudotumours Better understanding - natural history & risk of progression

1.To assess the natural history of asymptomatic pseudotumours associated with MoM HRs

2.To identify factors from the initial assessment associated with future revision surgery

Patients and Methods

Prospective longitudinal cohort study

2007 / 2008

- 25 MoM HRs (21 patients) with asymptomatic pseudotumours Kwon 2011
- Asymptomatic denied pain, satisfied, OHS
 <u>></u> 34 (good / excellent)
 - Ultrasound + blood metal ions + x-ray + OHS (/48) + UCLA (/10)

2012 / 2013

All non-revised patients recalled

Repeated investigations (apart from blood metal ions)

Ultrasound assessment

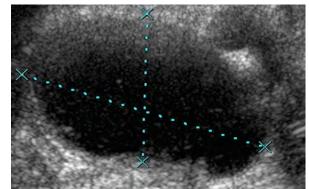
- Performed by 1 experienced radiologist blinded to clinical data
 - Recommended for results comparable to MRI Garbuz 2014
- Sonoline Antares Siemens Medical Solutions, USA
- Systematic approach / technique as per European Society of Skeletal Radiology

Pseudotumour

- Cystic, mixed, solid lesion communicating with joint
- Consistency, volume, location recorded

Results – patient cohort

Asymptomatic pseudotumours


25 MoM HRs (21 patients)

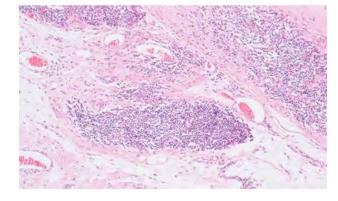
Mean age 59.9 years (range 39.2-73.1 years) 76% (n=19) female / 24% male (n=6)

Revised group 15 MoM HRs (60%)

Surveillance group 10 MoM HRs (40%)

Revised group (n=15)

- Time from initial assessment to revision
- Mean 2.7 years (range 0.4-6.4 years)
- All developed symptoms



Pseudotumours confirmed in all cases

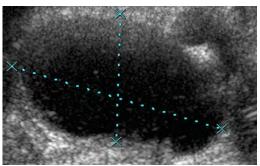
- Intra-operative revised to non-MoM bearings
- Histology

Median Oxford Hip Score

- Pre-revision = 37 (IQR 34-45)
- 2 years post-revision = 32 (IQR 21-39)

Surveillance group (n=10)

Time from initial to repeat assessment

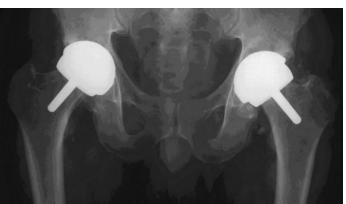

Mean 5.1 years (range 4.0-6.5 years)

Pseudotumour volume on ultrasound

- 2 increased (> 50%) / 4 stable / 4 decreased
 - No complete resolution
- No change in pseudotumour (p=0.956)

OHS - Median (IQR) initially **47** (44-48) vs. **46** (38-48) (p=0.065) **UCLA** - Median (range) initially **6.9** (3-9) vs. **6.4** (4-8) (p=0.102)

X-ray - No loosening, osteolysis, femoral neck narrowing




Factor SURVEILLANCE REVISED

	I	(1.5 mps in 1.8 patients)	.	
Gender	7 (70%) Female	12 (80%) Female	0.653	
	3 (30%) Male	3 (20%) Male		
Age at first	Mean 63.1 years	Mean 57.8 years	0.090	
ultrasound	(range 52.9-71.4 years)	(range 39.2-73.1 years)		
Unilateral or	3 (30%) Bilateral	11 (73%) Bilateral	0.049*	
bilateral metal-	7 (70%) Unilateral	4 (27%) Unilateral		
on-metal hips				
Hip	BHR 3 (30%)	BHR 9 (60%)	0.082	
resurfacing	resurfacing Conserve 7 (70%) Conserve			
design	Recap 0 (0%)	Recap 2 (13%)		
Time between	Mean 3.3 years	Mean 3.9 years	0.401	
hip resurfacing	(range 1.8–6.8 years)	(range 1.0–5.8 years)		
and first				
ultrasound				
Femoral	Median 46 mm	Median 46 mm	0.567	
component	(IQR 44-48 mm)	(IQR 44-50 mm)		
diameter				
Acetabular	Mean 47.2°	Mean 49.0°	0.627	
inclination	$(range 26.0^{\circ}-61.7^{\circ})$	$(range 41.0^{\circ}-62.6^{\circ})$		
Acetabular	Mean 18.7°	Mean 16.3°	0.555	
anteversion	$(range 8.2^{\circ}-32.0^{\circ})$	$(range 5.1^{\circ}-34.3^{\circ})$		
Blood cobalt	Median 3.4 µg/l	Median 7.9 µg/l	0.0048*	
concentration	$(IQR \ 1.2 \ \mu g/l - 4.8 \ \mu g/l)$ Median 2.8 $\mu g/l$	$(IQR \ 4.8 \ \mu g/l - 14.3 \ \mu g/l)$		
Blood		Median 9.4 µg/l	0.0162*	
chromium	$(IQR \ 1.0 \ \mu g/l - 7.2 \ \mu g/l)$	$(IQR 3.8 \ \mu g/l - 22.8 \ \mu g/l)$		
concentration				
Initial OHS	Median 47	Median 38	0.0183*	
(0-48 scale)	(IQR 44-48)	(IQR 34-46)		
Initial UCLA	Mean 6.9	Mean 5.7	0.104	
score	(range 3-9)	(range 3-8)		
(1-10 scale)				
Initial	Median 18.7 cm ²	Median 36.0 cm ²	0.0458*	
pseudotumour	$(IQR \ 16.9 \ cm^3 - 27.0 \ cm^3)$	$(IQR 22.4 \text{ cm}^3-60.0 \text{ cm}^3)$		
volume				
Initial	Cystic 7 (70%)	Cystic 6 (40%)	0.389	
pseudotumour	Mixed 3 (30%)	Mixed 7 (47%)		
consistency	Solid 0 (0%)	Solid 2 (13%)		
Initial	Anterior+/-Lateral 1 (10%)	Anterior+/-Lateral 7 (47%)	0.092	
pseudotumour	Posterior+/-Lateral 6 (60%)	Posterior+/-Lateral 7 (47%)		
location **	Other 3 (30%)	Other 1 (6%)		

Factors predicting future revision

P-value

	Hips	Sensitivity	Specificity	PPV	NPV	Diagnostic test
	(%)					characteristics for
Blood metal ions	13	66.7	70.0	76.9	58.3	predicting future
> 5 µg/l	(52)	(38.4-88.2)	(34.8-93.3)	(46.2-95.0)	(27.7-84.8)	revision
Blood metal ions	13	66.7	70.0	76.9	58.3 TI	he 2012 Otto Aufranc Award
>7 μg/l	(52)	(38.4-88.2)	(34.8-93.3)	(46.2-95.0)	(27.7-84.8) Ca	ne Interpretation of Metal Ion Levels in Unilateral and Bilateral Hip Resurfacing therine Van Der Straeten MD, George Grammatopoulos MD,
Blood metal ions	12	66.7	80.0	83.3		rinderjit S. Gill BEng, DPhil, Alessandro Calistri MD, tricia Campbell PhD, Koen A. De Smet MD Unilateral
> published levels *	(48)	(38.4-88.2)	(44.4-97.5)	(51.6-97.9)	(31.6-86.1)	Cobalt > 4.0 µg/l
						Chromium > 4.6 μg/l
Initial volume	5	26.7	90.0	80.0	45.0	Bilateral
> 50 cm ³	(20)	(7.8-55.1)	(55.5-99.7)	(28.4-99.5)	(23.1-68.5)	Cobalt > 5.0 μg/l
Initial volume	10	60.0	90.0	90.0	60.0	Chromium > 7.4 μg/l
> 30 cm ³	(40)	(32.3-83.7)	(55.5-99.7)	(55.5-99.7)	(32.3-83.7)	The Natural History of Inflammatory Pseudotumors in Asymptomatic Patients After Metal-on-metal Hip Arthroplasty
Initial volume	16	80.0	60.0	75.0	66.7	Sulaiman A. Almousa MBBS, Nelson V. Greidanus MD, MPH, Bassam A. Masri MD, Clive P. Duncan MD, MSc, Donald S. Garbuz MD, MHSc
> 20 cm ³	(64)	(51.9-95.7)	(26.2-87.8)	(47.6-92.7)	(29.9-92.5)	
Blood metal ions	16	86.7	70.0	81.2	77.8	Optimal test
> published levels *	(64)	(59.5-98.3)	(34.8-93.3)	(54.4-96.0)	(40.0-97.2)	characteristics for
and/or initial						predicting future
volume > 30 cm ³ **						revision

■ HIP

Similar incidence of periprosthetic fluid collections after ceramic-on-polyethylene total hip arthroplasties and metal-on-metal resurfacing arthroplasties

■ HIP

Pseudotumour incidence, cobalt levels and clinical outcome after large head metal-onmetal and conventional metal-on-polyethylene total hip arthroplasty BENIGN lesions / "PHYSIOLOGICAL"

Less regular FU if outside threshold response to arthroplasty

Limitations

and NOT "PSEUDOTUMOURS"?

Small cohort / not applicable MoM THRs

 Threshold proposed for closer surveillance / revision of MoM HR patients with asymptomatic pseudotumours

High blood metal ions <u>AND/OR</u> pseudotumour >30 cm³

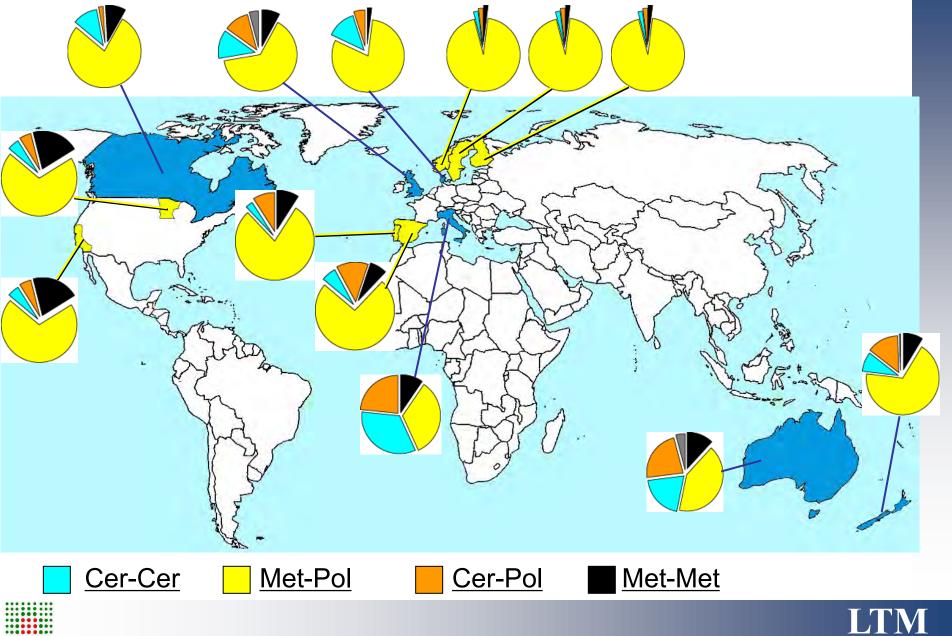
Can be used in interim until more robust data available on natural history of asymptomatic pseudotumours

Acknowledgments

The authors would like to thank The Royal College of Surgeons of England and The Arthritis Research Trust for providing one author with funding in the form of a Surgical Research Fellowship

SERVIZIO SANITARIO REGIONALE EMILIA - ROMAGNA

Istituto Ortopedico Rizzoli di Bologna Istituto di Ricovero e Cura a Carattere Scientifico


Ceramic on Ceramic Clinical Results

Aldo Toni

Chief of Hip & Knee Prosthetic Department, Istituto Ortopedico Rizzoli Bologna, ITALY

THA Bearings...different ideas around the world!!

© LTM-IOR 2015

Laboratorio di Tecnologia Medica

Cer-Met Bearings

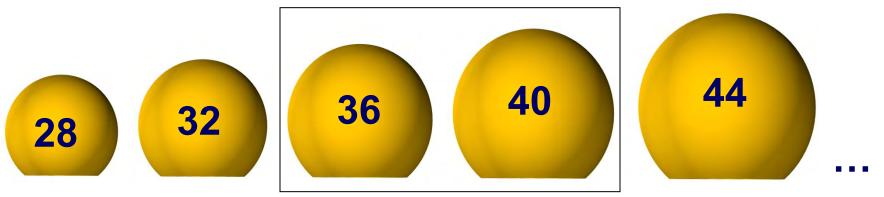
DePuy Synthes People inspired COMPANIES OF Johnon Johnon

DePuy Orthopaedics, Inc., announced its decision to discontinue sales of its ULTAMET® Metal-on-Metal Articulation and COMPLETE[™] Ceramic-on-Metal Acetabular Hip System worldwide. The discontinuation will be effective August 31, 2013. This will allow surgeons to plan accordingly for upcoming surgeries. The ceramic head used in COMPLETE will continue to be available for use in other bearing surface combinations.

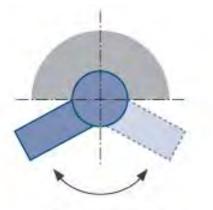
Bearing materials

Do we need all of them ? Which one is the best ?

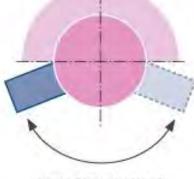
More Active and Demanding patients acting in sports and expecting a longer prosthetic life

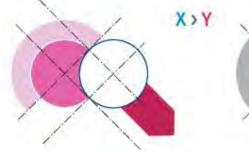


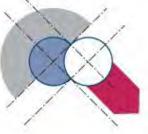
They requires Long Lasting & Highly Performing THA


Low Wear THA Wider Articular Range of Motion Lowest Incidence of Dislocation

BIG HEADS & HARD BEARING or XLPE (Vit E)




How much Bigger is BETTER?



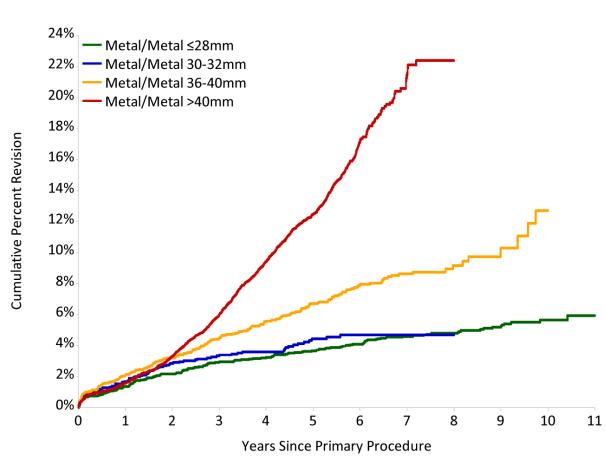
Small Diameter Head

Large Diameter Head

Study	Dislocation Rate 28mm 10.6% (14/132), 32mm 2.7% (3/110)		
Hummel et al ² (Revision Study)			
Dowd et al ⁴	28mm 3.7% (13/358), 32mm 1.2% (4/308), 36mm 0.2% (1/515		
Peters et al ⁵	28mm 2.5% (4/160), 38mm 0% (0/136)		
Cuckler et al ²	28mm 2.5% (2/78), 38mm 0% (0/616)		
Howie et al ⁶	28mm 4.4% (12/275), 36mm 0.8% (2/258)		

Bigger: more motion & less dislocation !

"Bigger is Better" Large-Diameter-Head-THA! No more neck fracture or epiphyseal necrosis...



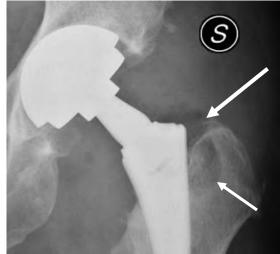
... but Bigger metal head were soon related to higher revision rate

Figure HT22: Cumulative Percent Revision of Metal/Metal Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis OA)

HR - adjusted for age and gender
Metal/Metal 30-32mm vs Metal/Metal ≤28mm Entire Period: HR=1.22 (0.92, 1.61),p=0.171
Metal/Metal 36-40mm vs Metal/Metal ≤28mm Entire Period: HR=1.96 (1.58, 2.43),p<0.001
Metal/Metal >40mm vs Metal/Metal ≤28mm 0 - 1Yr: HR=1.34 (1.02, 1.76),p=0.034 1Yr - 2Yr: HR=2.55 (1.88, 3.45),p<0.001 2Yr - 2.5Yr: HR=4.58 (3.04, 6.92),p<0.001 2.5Yr - 3Yr: HR=4.07 (2.72, 6.08),p<0.001 3Yr+: HR=8.73 (6.94, 10.99),p<0.001
Metal/Metal >40mm vs Metal/Metal 36-40mm

0 - 2Yr: HR=0.90 (0.75, 1.09),p=0.288

2Yr - 2.5Yr: HR=2.34 (1.58, 3.46),p<0.001 2.5Yr - 3Yr: HR=2.07 (1.41, 3.04),p<0.001 3Yr+: HR=4.45 (3.60, 5.50),p<0.001

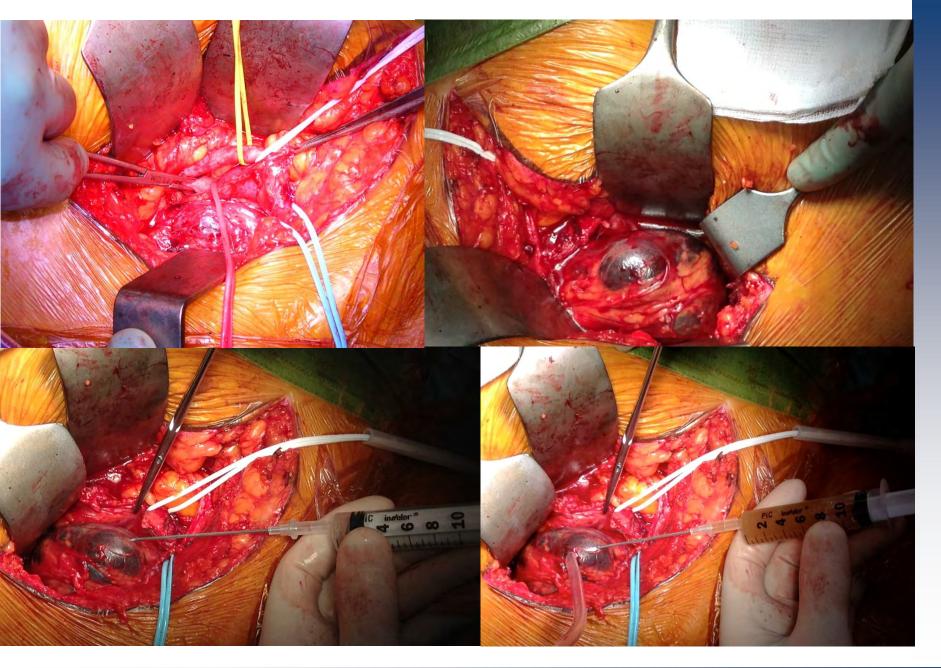


ALVAL

ARMD (Adverse Reaction to Metal Debris)

(Aseptic Lymphocytic Vasculitis Associated Lesion)

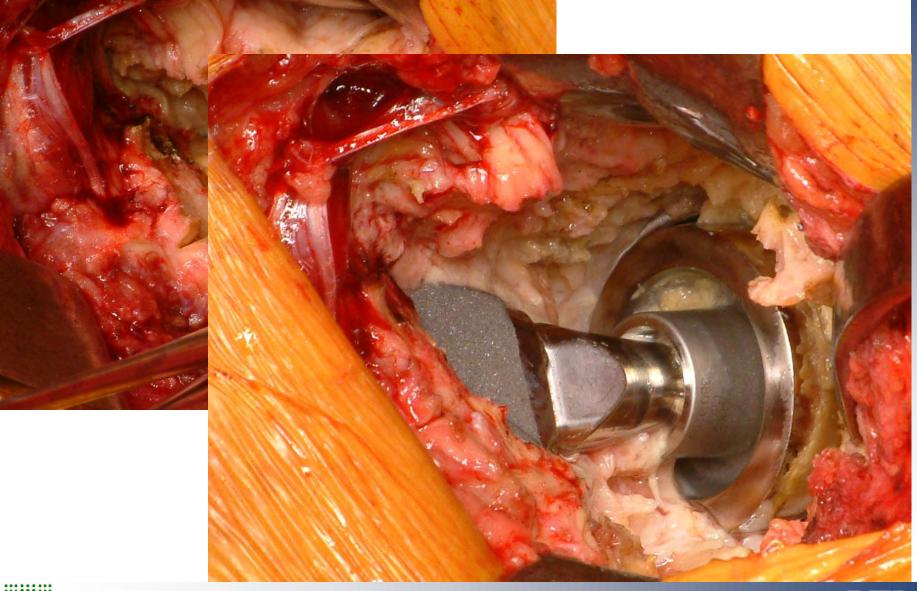
<u>begins</u> with perivascular lymphocytic cuffing evolving into lymphoid aggregates <u>ends</u> with extensive tissue necrosis

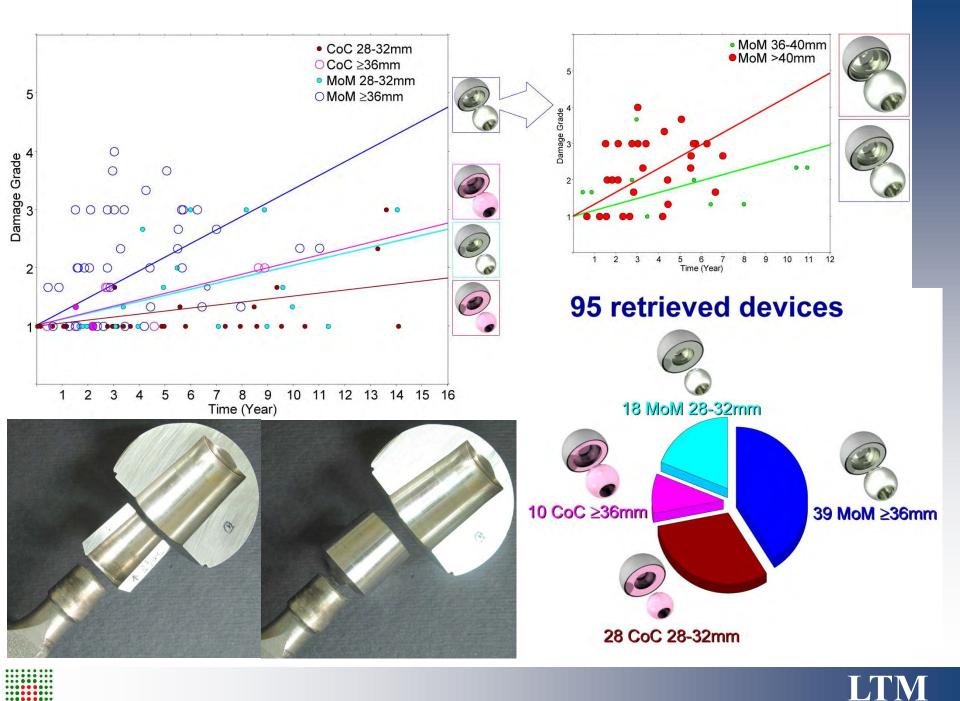


LF 2,50 mr

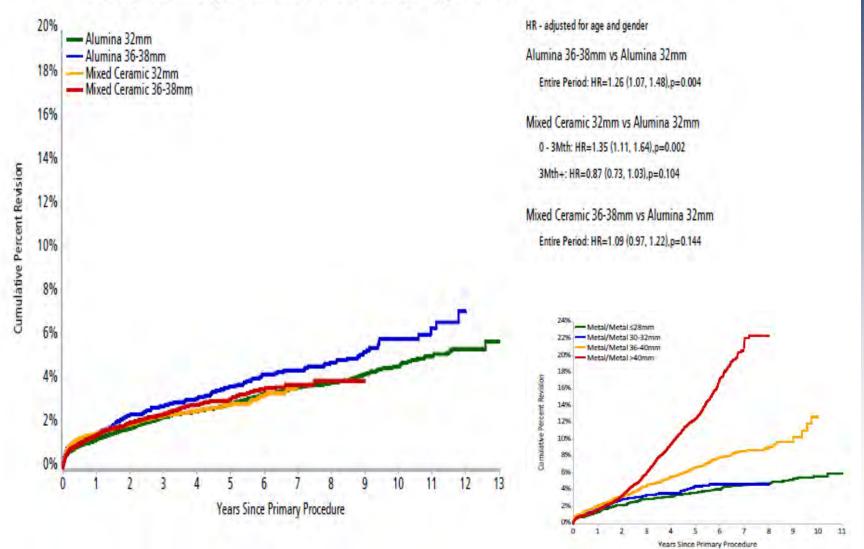
Risoluziona ori

CT: a mass in the thigh



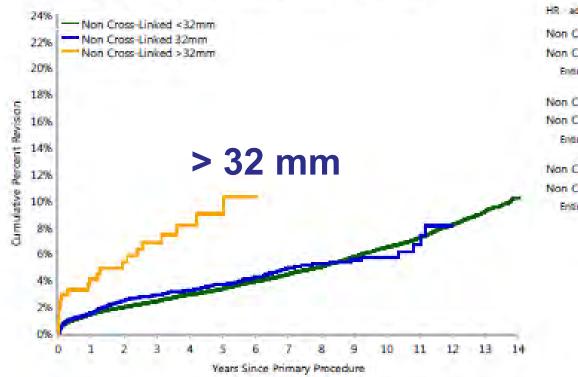


...severe articular tissues necrosis!!



© LTM-IOR 2015

Laboratorio di Tecnologia Medica


Figure HT45: Cumulative Percent Revision of Primary Total Conventional Hip Replacement with Ceramic Femoral Head by Ceramic Type and Head Size (Primary Diagnosis OA)

LTDM Laboratorio di Tecnologia Medica

Non X-L POLYETHYLENE BEARING

Figure HT26 Cumulative Percent Revision of Primary Total Conventional Hip Replacement using Non Cross-linked Polyethylene by Head Size (Primary Diagnosis OA)

HR adjusted for age and gender Non Cross-Linked 32mm vs Non Cross-Linked <32mm Entre Period: HR=113 (0.96, 1.33),p=0.137

Non Cross-Linked >32mm vs Non Cross-Linked <32mm Entire Period: HR=2.64 (171, 4.05),p=0.001

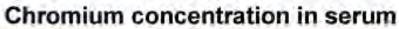
Non Cross-Linked >32mm vs Non Cross-Linked 32mm Entire Period: HR=2.33 (1.48, 3.67),p<0.001

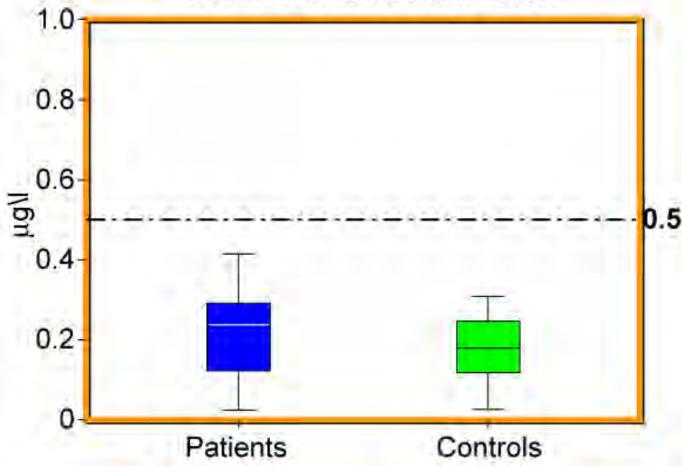
STOP USING STANDARD POLYETHYLENE WITH BIG HEADS

Focus on: BIOLOX® delta BIOLOX® delta bearings

Also these ceramic device components contains

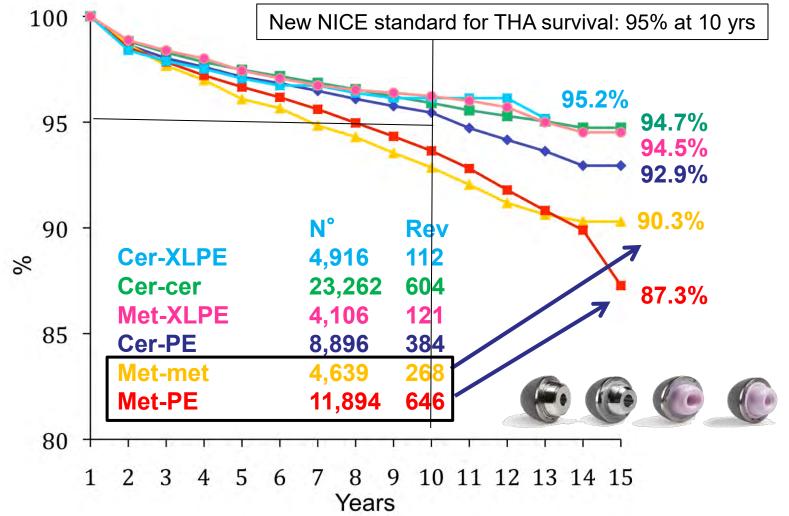
trivalent Cr ions

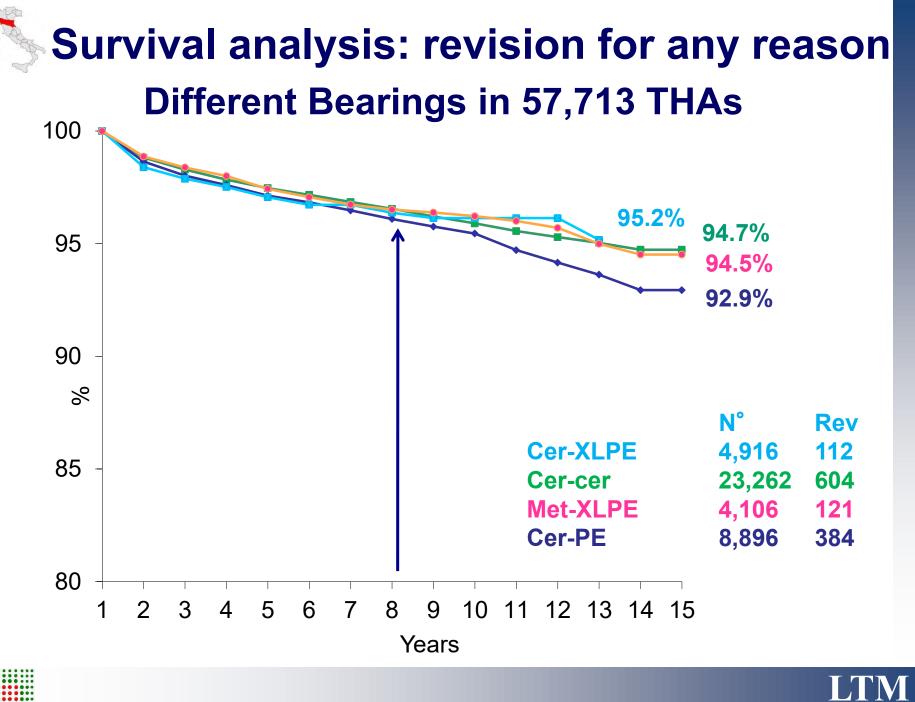

Component of the composite	Formula	Volume %
Alumina, doped with Chromia	Al ₂ O ₈ :Cr	80 %
Zirconia with Y- stabilization	ZrO ₂ :Y	17%
Strontiumaluminate (minor Cr-content)	SrAl _{12-x} Cr _x O ₁₉	3 %


The present study was aimed at detecting any

'in vivo' release of Cr ions from these ceramic bearings

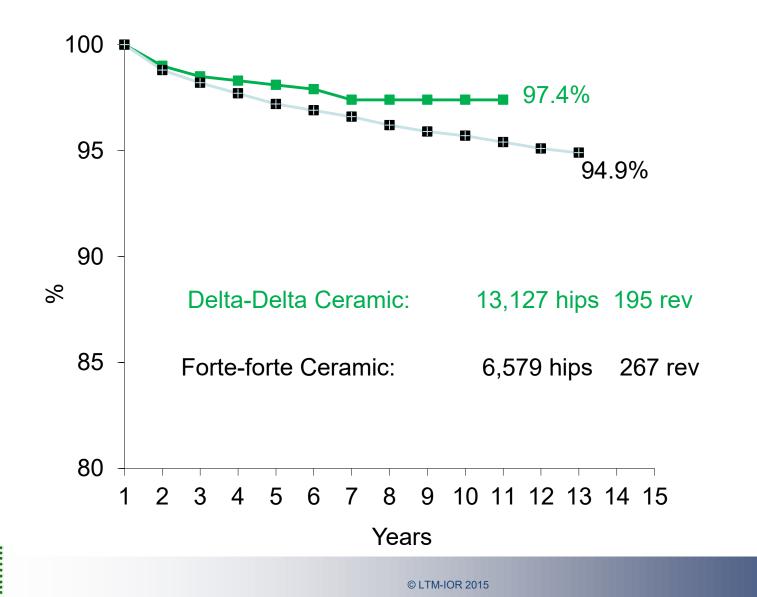
Results



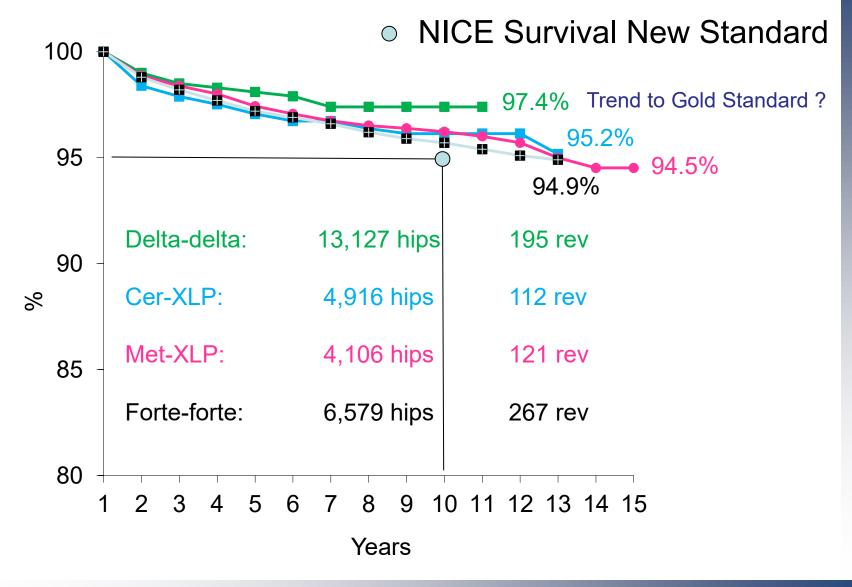

Dotted lines represent higher lab reference value Box are limited by values of the 25th and 75th percentile Horizontal line crossing the box represents the median value Vertical lines are extended from min to max value

Survival analysis: revision for any reason BIG REGISTRY DATA: 57,713 THAs (2000-2014)

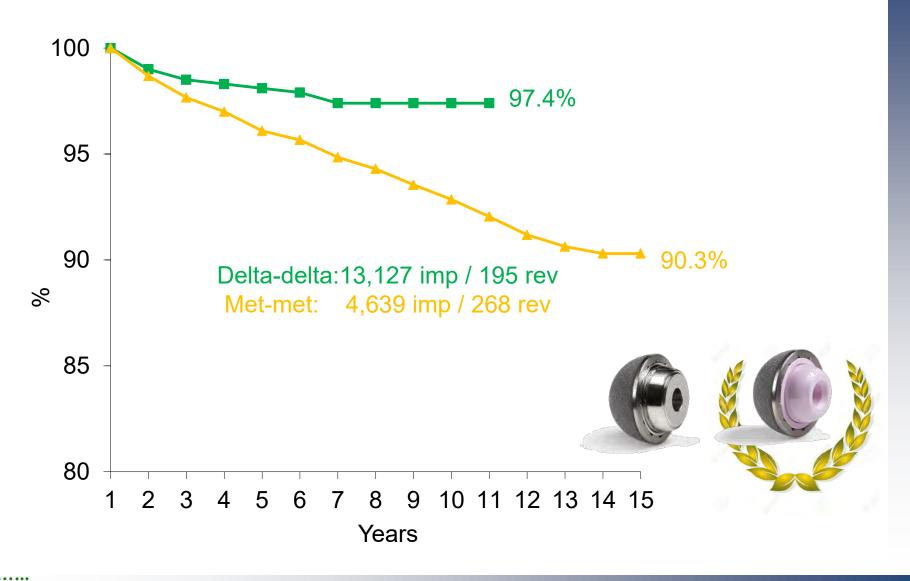
© LTM-IOR 2015


Laboratorio di Tecnologia Medica

Survival analysis: revision for any reason Similar Survivals at 13-15 years 100 95.2% 94.7% 95 94.5% N° Rev 90 4,916 **Cer-XLPE** 112 % 23,262 **604 Cer-cer Met-XLPE** 4.106 121 85 80 1 2 3 5 9 10 11 12 13 14 15 4 8 6 Years

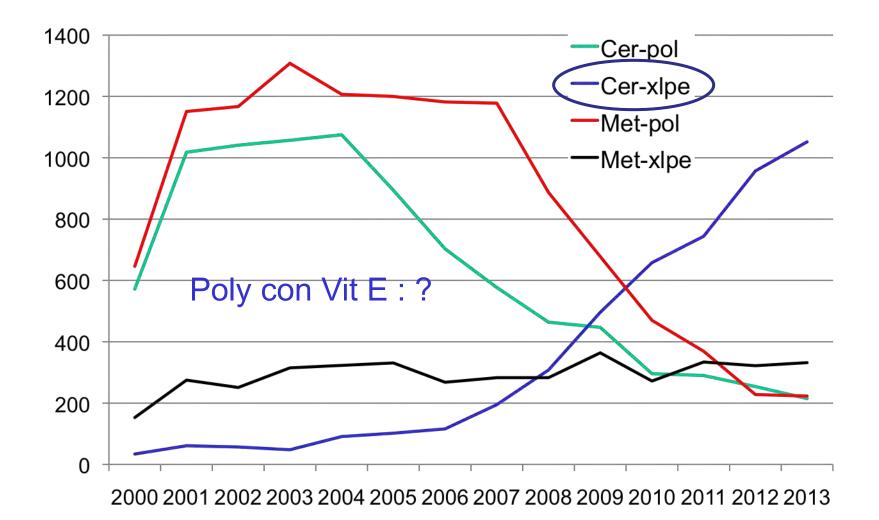


CERAMIC-on CERAMIC BEARING


Laboratorio di Tecnologia Medica

Survival analysis: revision for any reason

Survival analysis: revision for any reason



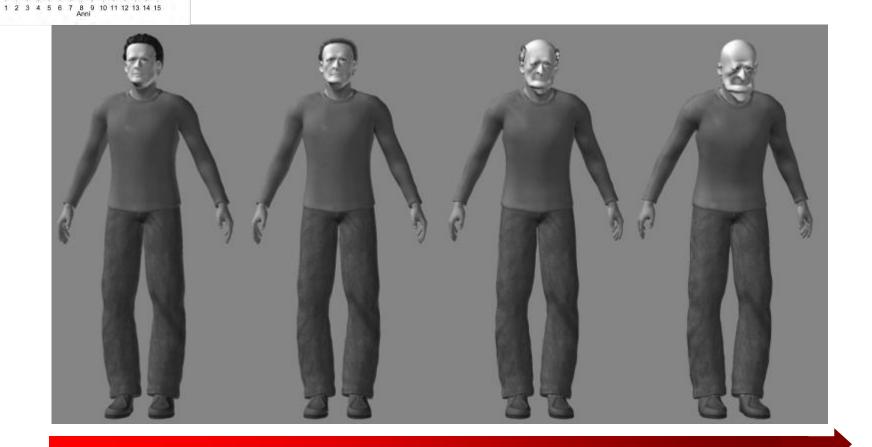
POLYETHYLENE BEARINGS

""pol": standard Polyethylene

"xlpe": x-linked Polyethylene

ſ	Biolox® Forte	Biolox® Delta	Biolox® Delta			Biolox® Forte		
			28mm	32mm	≥36mm	28mm	32mm	36mm
Implants	7.874	7.204	1.137	2.040	4.661	12.360	3.468	2.159
Fractures	28	5	-	1		36	1	-
%	0.4%	0.1%	1 /7,838 0,01 %		0.3%	0.03%	0%	

The fracture of Biolox Delta has been really EPISODIC !


Articular coupling in primary surgery

2013	4 6	18	4		69			
2012	5 6	18	8	62 1				
2011	7 6	15	8	60			4	
2010	9 6	13	8		57		8	
2009	12 7	10	9		50		11	
2008	16	6 7	9		48		13	
2007	22	7	5 12		43		12	
2006	22	8	3 14		40		12	
2005	25	1	10 3	20		34	9	
2004	26		10 3	25		28	9	
2003	30		10 1	27		24	8	
2002	31		9 1	29		22	7	
2001	31	2	10 2	29	1	21	8	
2000		38	7	1	27	18	7	
	0 10	20	30 40	50	60 70	80	90 100	
	🔳 met-pol 📓 met-pol XL 📓 cer-pol XL 📓 cer-pol 📓 cer-cer 📓 met-met							

Choose Bearings upon Patients life expectancy and activity

90

8!

80

Cer-Cer Cer-XLPE Met-XLPE Met-PE

Conclusions

- All combinations of bearing surface have advantages and disadvantages.
- MoM have recently fallen out of favour.
- In assessing the best bearing surface for an individual patient we feel it is necessary to analyse the specific implications for each patient.
- CoC for us is the better Bearing because osteolysis is over and risk of fracture is close to zero, with an excellent general overall survival.

Conclusions

• Cer-XLPE has good performance at 10-12 years (Gold Standard for younger and more active patients)

•Ceramic is a safe solution for Large Head up to 44 mm

•For Large Head THA, trunions should be made bigger to reduce torque, increasing contact surface, seeking for more stable solutions (Ceramtec Option Head solution)

Picture of the very first orthopaedic surgery performed at the Rizzoli Institute on 1896

Is Squeaking Still a Reason for Concern?

Evert J Smith North Bristol NHS Trust Bristol

UK

International Combined Meeting British Hip Society Società Italiana Dell'Anca Milan 26 and 27 November 2015

Disclosure

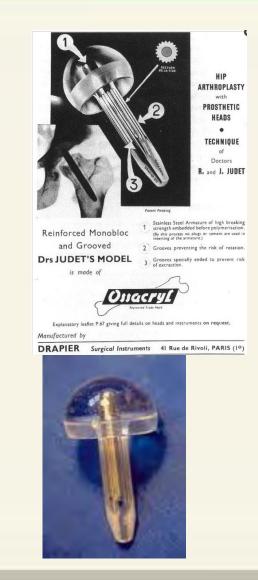
Zimmer Biomet

Charity support - Arthroplasty for Arthritis

Industry support for bhac:

Amedica Biocomposites Biomimetics Ceramtec DJO JRI MDT Medacta Smith & Nephew Wright Medical

Declaration of Interests and activities provided to Societies, Government bodies, Journals, NHS Trust, Ethics Committees and International Congresses


EVERT SMITH

Squeaking in Hip Arthroplasty

- All bearing couples may squeak
- 4-10% of MoM bearing couples squeak

EVERT SMITH

 The Judet acrylic hemiarthroplasty squeaked

Squeaking in Hip Arthroplasty

- All joints vibrate
- When the amplitude is in the audible range and large enough then squeaking is audible
- Audible noise in range 1-7.5kHz

Squeaking Noise

'High pitched' - like a door hinge - so should be reproducible.

Described as:

- Grating
- Grinding
- Clicking
- Cracking
- Knocking
- Crunching
- Popping

EVERT SMITH

Squeaking - Grades

<u>Grade</u>

- 1. Rare
- 2. Occasional or intermittent
- 3. Frequent
- 4. Every step or position change

Capello W, D'Antonio J, Feinberg J, Manley M, Naughton M, J Arthroplasty 2008; 23: 39-43

EVERT SMITH

Squeaking in Ceramics

- Ceramic on ceramic bearings used in Europe since 1970
- Biolox forte introduced in 1995
- FDA approved 3rd generation (Biolox delta) ceramics in 2003 based on Investigational Device Exemption (IDE) premarket clinical trials in USA
- By 2005 squeaking was a problem for patients and surgeons

Disadvantages of Ceramics

• Squeaking

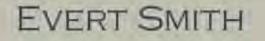
- Brittle head and liner fractures
- Lack of edge support on liners
- Reduced revision options
- Cost

Ceramic Squeaking

Biolox Delta[™] << Biolox Forte[™] Wear at 3.0 Mc - X10↓ Surface roughness = no change

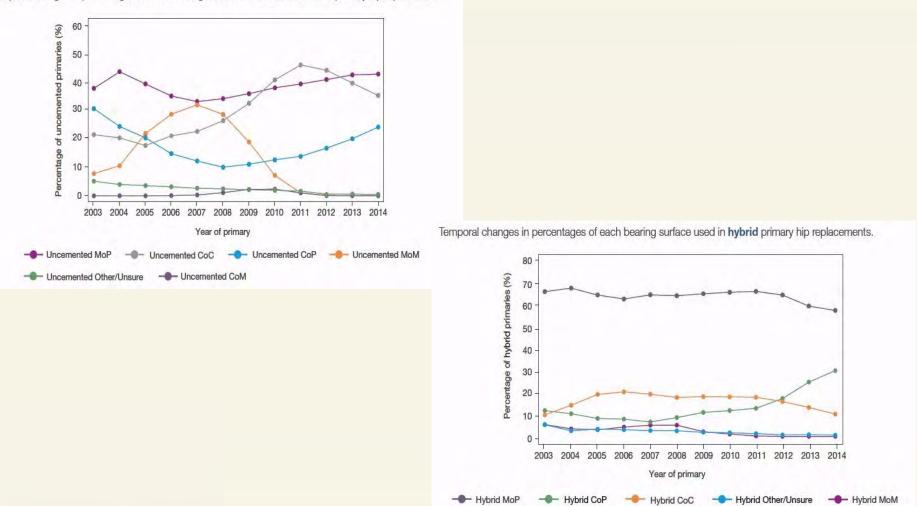
- Ceramic an exceptional bearing couple
- Squeaking may affect up to 20% patients

Is it the trade off for:


- Excellent function
- Reduced osteolysis
- Longevity?

EVERT SMITH

Ceramic Coupling


- Ceramic bearings in the UK 14%
- Metal on Poly in the UK 59%
- Ceramic bearings in USA -14%

Bozic K, Kurtz S, Lau E, Ong K, Vail T, Berry D J Bone Joint Surg 2009; 91: 1614-20

Ceramic on Ceramic - Declining

Temporal changes in percentages of each bearing surface used in uncemented primary hip replacements.

National Joint Registry for England, Wales and Northern Ireland 2014

EVERT SMITH

Effect of Inclination Angle

Group	Severe	Stripe	Low
Cup Angle	60.8°	50.4°	42.8°

- Ceramics sensitive to positioning
- Correct cup inclination is 'the' basic pre-requisite.
- If cup too vertical catastrophic wear of the coupling results
- mean leads to mean friction

Nevelos J, Ingham E, Doyle C, Nevelos A, Fisher J Journal of Materials Science: Materials in Medicine 2001; 12: 141-44 Dalla Pria P. 1st Symposium on the Ceramic Wear Couple. Stuttgart: Ferdinand Enke Verlag; 1996: 84-91

EVERT SMITH

Ceramics with Edge Loading

- Edge loading induces severe contact stresses with break up of the ceramic grain boundary
- Chipping of ceramics initiates noise
- 3rd body wear causes squeaking with friction induced vibration
 ↑ wear leads to ↑ friction

EVERT SMITH

Toni A, Traina F, Stea S et al J Bone Joint 2006; 88:726-734 Sariali E, Stewart T, Jin Z et al J Biomech 2010; 44: 326-333 Sariali E, Jin Z Stewart T, Fisher J J Orthop Res 2010; 44: 326-333 Sanders A, Tibbits I, Brannon R J Orthop Res 2012; 30: 1377-1383

Long Term Follow-Up

- 5500 ceramic THAs
- In 25 years 13 (0.002%) alumina fractures recorded
- No comment on squeaking

Hannouche D, Nich C, Bizot P, Meunier A, Nizard R, Sedel L Clin Orthop 2003; 417: 19-26

- 265 patients
- 20 year FU
- 2.6% squeakers

Sedel L EHS 2012

EVERT SMITH

Ceramic Cup and Head

- Ceramic tapered threaded Biolox cup and a 38 mm alumina head
- Autophor 900-S stem (porous coated cobalt chromium molybdenum)
- 78 patients, minimum 20 year FU
- Cup protrusio -13 cases (17%)
- 7 revisions
- No fractures

EVERT SMITH

No squeaking

Petsatodis G, Papadopoulos P, Papavasiliou K, Hatzokos I, Agathangelidis F, Christodoulou A J Bone Joint Surg 2010; 92: 639-44

Composite Metal/Ceramic Cup

- 9 patients (21%) squeakers
- Trident cup

EVERT SMITH

- ABG II stem (titanium-molybdenum 12%zirconium6%-iron 2%: TMZF beta phase alloy and V40 taper neck)
- Deviation in inclination and anteversion not statistically significant
- Short necks 2.7mm a risk factor for increased impingement

Keurentjies J, Kuipers R, Wever D, Scheurs B Clin Orthop Relat Res 2008; 466: 1439-43

Squeaking in a Series of THAs

Biolox Forte bearings

- 0.5% (13/2384) squeaked
 Excessive cup inclination and anteversion
 Patients were younger, heavier and taller
- •Squeaking delayed until >14 months

Walter W, O'Toole G, Walter W, Ellis A, Zicat B J Arthroplasty 2007; 22: 496-503

Securfit stem

EVERT SMITH

Squeaking in the USA

Restrepo et al	18.4%
(Trident cup with Accolade stem)	
Mai et al	17.0%
(Trident cup with variety of stems)	
Lee et al	15.0%
(Plasmacup with Bicontact stem)	
Jarrett et al	10.7%
(Accolade TMZF with Trident PSL cup V40	
femoral head and Trident alumina insert)	
Swanson et al	8.9%
(Variety of cups and stems)	7 70/
Christensen & Jacobs	7.7%
(Trident cup with Accolade stem)	
Hamilton et al	0.0%
(Pinnacle cup and variety of stems) Restrend C. Post 7. Kai B. Hozack W. L. Bone Joint Surg. 2010; 92; 550-57.	

Restrepo C, Post Z, Kai B, Hozack W J Bone Joint Surg 2010; 92: 550-57 Jarrett C, Ranawat A, Bruzzone M, Rodriguez J, Ranawat C J Bone Joint Surg 2009; 91: 1344-49 Christensen C, Jacobs C Poster presented at: 75th American Academy of Orthopaedic Surgeons; March 5-9, 2008; San Francisco, CA Mai K, Verioti C, Ezzet K, Copp S, Walker R, Colwell C Clin Orthop Relat Res 2010; 468: 413-17 Lee Y, Ha Y, Yoo J, Koo K, Yoon K, Kim H J Bone Joint Surg 2009; 92: 1715-19 Hamilton W, McAuley J Dennis D, Murphy M, Blumenfeld T Clin Orthop Relat Res 2010; 468: 358-66 Swanson T, Peterson D, Seethala R, Bliss R, Spellmon C J Arthroplasty 2008; 25: 36-42

EVERT SMITH

Response to Squeaking

- Rothman Institute halts ceramics!
- J Arthroplasty 2008

'It appears that exact etiology of squeaking remains unknown... and prompts the dire need for detailed and further research into this problem. We have temporarily halted the use of CoC bearing surfaces in our unit.'

Revision for Squeaking

Early failure a cause for concern - patients given the option of revision

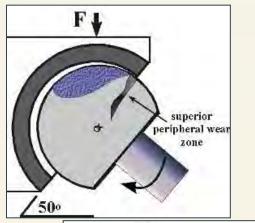
Jarrett C, Ranawat A, Bruzzone M, Rodriguez J, Ranawat C J Bone Joint Surg 2009; 91: 1344-49

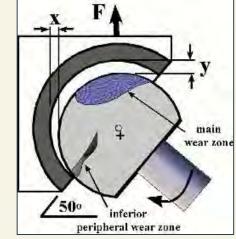
12% (11/95) revised to HXL poly liner with no complications

Restrepo C, Matar W, Parvisi J, Rothman R, Hozak W Clin Orthop Relat Res 2010; 468: 2340-45

• 22% (2/9) squeaking hips revised Keurentjies J, Kuipers R, Wever D, Scheurs B Clin Orthop Relat Res 2008; 466: 1439-43

EVERT SMITH


- Age, height and weight
- Raised BMI impact in some studies
- Timing squeaking noted early in some patients but mostly when 'normal' ROM returned or upon bending or altering their pelvic position – high heels


UI Haq R, Park K-S, Seon J-K, Yoon T-R J Arthroplasty 2012; 27: 909-915 Ki SC, Kim BH, Ryu JH, Yoon DH, Chung YY. J Orthop Sci 2011; 16: 21-5

EVERT SMITH

Surgeon Factors

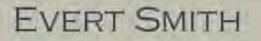
- Posterior approach leading to increased cup anteversion
- •Malposition of liner
- •Leg length difference laxity and increased micro-separation

Ecker T, Robbins C, van Flanden G et al Orthopaedics 2008; 31: 875 UI Haq R, Park K-S, Seon J-K, Yoon T-R J Arthroplasty 2012; 27: 909-915

EVERT SMITH

The Implant - Influenced by Surgeon

- Increased cup inclination
- Excessive cup anteversion
- Increased offset
- Lateralisation of hip centre
- Malpositioned liners
- Short neck lengths
- Head sizes <u>></u>36mm
- Material ? Biolox delta ceramics not evaluated


Hamilton W, McAuley J, Blumenfeld T Lesko J, Himden S, Dennis D J Arthroplasty 2015; 30: 110-115

EVERT SMITH

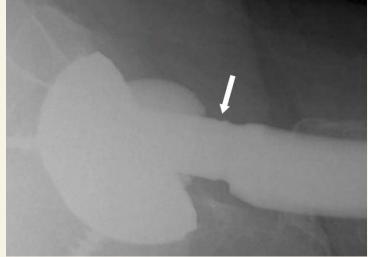
Squeaking and Implant Vibration

- Modal analysis used to evaluate 'dynamic' behavior of the implant
- Cementless femoral stems have their own
 <u>eigenfrequencies</u>
- Stems with lower <u>eigenfrequency</u> vibrated in the audible range and intiated squeaking
- Bearing clearance and the cup did not play a 'dynamic' role

Hothan A, Huber G, Weiss C, Morlock M J Biomechanics 2011; 44: 837-841

Implant Design – Stem and Taper

- Accolade stem
 - TMZF and V40 taper neck AP diameter in midsection 10mm
- Omnifit stem
 - titanium-aluminium 6%
 - vanadium 4% alloy and C taper neck geometry
- V40 taper increased squeaking by 7 fold (18.4% vs 2.6%)
- V40 taper and a slender neck amplifies the vibration


Restrepo C, Post Z, Kai B, Hozack W J Bone Joint Surg 2010; 92: 550-57 Mai K, Verioti C, Ezzet K, Copp S, Walker R, Colwell C Clin Orthop Relat Res 2010; 468: 413-17

EVERT SMITH

Squeaking with Impingement

<u>Socket – neck impingement</u> The neck is notched from the cup rim neck impingement

Walter W, O'Toole G, Walter W, Ellis A, Zicat J Arthroplasty 2007; 22: 496-503 Keurentjies J, Kuipers R, Wever D, Scheurs B Clin Orthop Relat Res 2008; 466: 1439-43

Lee Y et al JBJS 2010

EVERT SMITH

Implant Design - Trident cup

- Raised metal rim with recessed ceramic liner
- Flush ceramic liners squeak less than a raised liners (0.6 vs 3.2%)
- Reduced arc and early neck-rim impingement
- Cup deformation

Murphy S Orthopaedics Today 2008; 28: 92 Barrack R, Barrack C, Skinner H Clin Orthop Relat Res 2004; 429: 73-79

EVERT SMITH

Squeaking without Lubrication

- Dry and lubricated tests (25% bovine serum)
- Normal gait, high load, stripe wear, metal transfer, edge wear and micro-fracture parameters evaluated
- Squeaking produced in dry conditions
- With high load, stripe wear, or metal transfer
- Once squeaking occurred it did not stop
- Squeaking disappeared when lubricant added (except for the metal transfer condition)
- Squeaking is a problem of disrupted ceramic/ceramic lubrication

Chevillotte C, Trousdale R, Chen Q, Guyen O, An O Clin Orthop Relat Res 2010; 468: 345-50

EVERT SMITH

Causes of Squeaking

↑friction/**↓**lubrication

- •Impingement
- Subluxation
- •Edge loading/stripe wear
- Micro-separation
- Metal transfer
- •Debris (3rd body wear -Al2O3 ZrO2)
- Mismatch materials –
 zirconia on alumina

Owen D, Rusell N, Smith P, Walter W Bone Joint J 2014; 96: 181-7 Morlock M, Nassautt R, Janssen R, Willmann G, Honl M J Arthroplasty 2001; 16: 1071-74

EVERT SMITH

Ceramic Hips

- Not as forgiving as other bearing surfaces
- Surgical technique and design features are critical with ceramic bearings
- Squeaking can be unacceptable to the patient and may require revision surgery

Squeaking is a problem of component positioning and patient postural adaption.

Squeaking remains a concern.

EVERT SMITH

DIPARTIMENTO CHIRURGICO AZIENDA OSPEDALIERO-UNIVERSITARIA DI PARMA U.O.C. CLINICA ORTOPEDICA IS THERE MENTOFE VEDENCE THAT CERAMIC ON POLY IS BETTER THAN METAL ON POLY?

E. VAIENTI

UHMWPE Biomaterials Handbook

Ultra-High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices

Property	Alumina in 1970s	Alumina in 1980s	Alumina in 1990s	Zirconia	ZTA
Bending strength (MPa)	>450	>500	>550	>900	>1000
Fracture toughness (MPa·m ^{1/2})	4	4	4	8	5.7
Vickers hardness (0.1)	1800	1900	2000	1250	1975
Grain size (μm)	4.5	3.2	1.8	<0.5	<1.5 (alumina matrix)
Young's modulus (GPa)	380	380	380	210	350

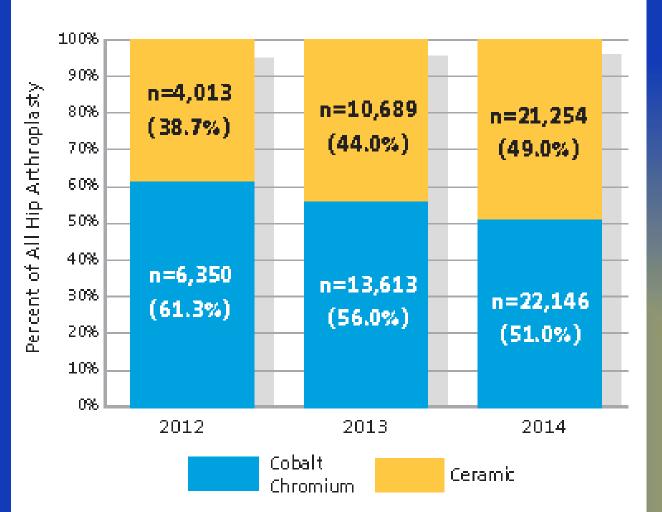
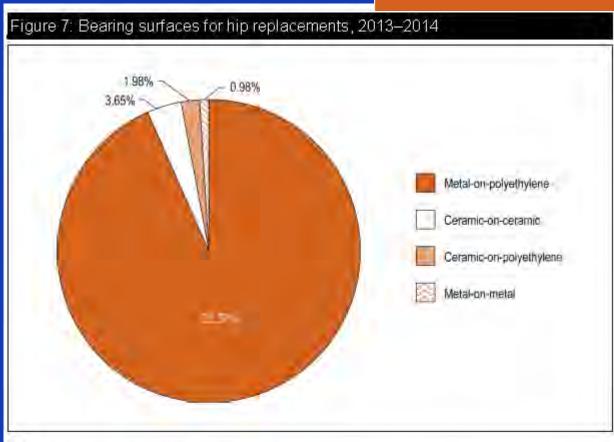

ZTA, Zirconia toughened alumina microcomposite.

Figure 20: Composition of Femoral Heads (N=78,065)



Improving Orthopaedic Care Through Data

Hip and Knee Replacements in Canada: Canadian Joint Replacement Registry 2015 Annual Report

Notes

N = 12,599 bearing surfaces for primary total hip replacements.

Fewer than 5 cases of ceramic-on-metal were excluded from analysis. In accordance with CIHI's privacy policy, cells with counts of 1 to 4 are suppressed.

Source

Canadian Joint Replacement Registry, 2013-2014, Canadian Institute for Health Information.

AUSTRALIAN ORTHOPAEDIC ASSOCIATION NATIONAL JOINT REPLACEMENT REGISTRY

Table HT27Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Bearing Surface (Primary
Diagnosis OA)

Bearing Surface	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Ceramic/Ceramic	2109	65114	1.5 (1.4, 1.6)	2.4 (2.3, 2.6)	3.2 (3.0, 3.3)	4.0 (3.8, 4.2)	5.1 (4.9, 5.4)	6.5 (6.0, 7.0)
Ceramic/Non XLPE	350	5273	19 (1.6, 2.3)	3.2 (2.7, 3.7)	3.9 (3.4, 4.5)	4.9 (4.3, 5.6)	7.3 (6.5, 8.1)	11.4 (10.0, 12.9)
Ceramic/XLPE	775	30835	2.6 (1.4, 1.7)	2.5 (2.3, 2.7)	3.1 (2.8, 3.3)	3.6 (3.3, 3.9)	4.6 (4.1, 5.1)	
Ceramic/Metal	15	300	1.7 (0.7, 4.0)	3.7 (2.1, 6.6)	4.1 (2.3, 7.1)			
Metal/Metal	298	5129	1.5 (1.2, 1.9)	3.3 (2.8, 3.8)	4.3 (3.8, 4.9)	5.0 (4.4, 5.7)	6.3 (5.6, 7.0)	7.7 (6.7, 8.8)
Metal/Non XLPE	1991	34014	1.4 (1.3, 1.5)	2.4 (2.3, 2.6)	3.4 (3.2, 3.6)	4.5 (4.2, 4.7)	6.4 (6.1, 6.7)	9.9 (9.4, 10.5)
Metal/XLPE	2962	107225	1.5 (1.4, 1.6)	2.3 (2.2, 2.4)	2.9 (2.8, 3.0)	3.5 (3.3, 3.6)	4.3 (4.1, 4.5)	5.4 (4.8, 6.1)
Ceramicised Metal/Non XLPE	27	287	1.8 (0.7, 4.2)	4.0 (2.2, 7.1)	4.4 (2.5, 7.6)	7.9 (5.2, 12.1)	11.2 (7.7, 16.2)	
Ceramicised Metal/XLPE	299	14016	1.5 (1.3, 1.7)	2.0 (1.7, 2.2)	2.3 (2.0, 2.6)	2.6 (2.3, 2.9)	3.3 (2.9, 3.9)	
TOTAL	8826	262193						

Note: 253 procedures with unknown bearing surface, one procedure with Ceramicised Metal/Ceramic bearing surface and 7 procedures with Metal/Ceramic bearing surface have been excluded

All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

12th Annual Report

National Joint Registry for England, Wales, Northern Ireland and the Isle of Man

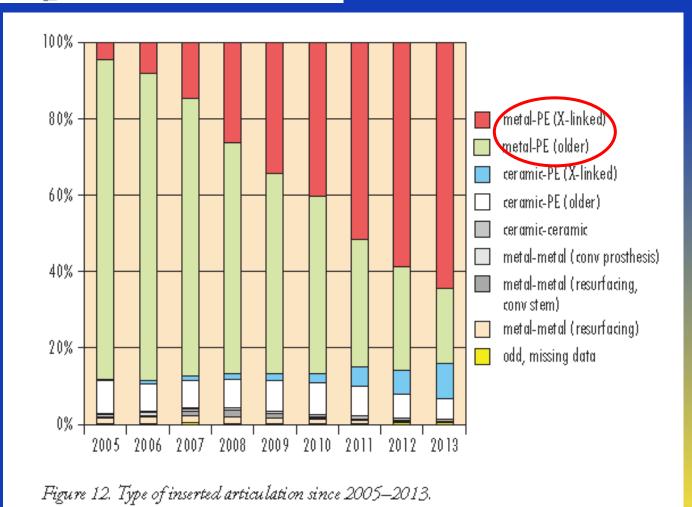

Surgical data to 31 December 2014

Table 1 Frequency of material chosen for femoral heads in procedures performed in 2014.

Material	Number of procedures	Numberof modular femoral heads used	Percentage
	97,472	95,850	
Ceramic		37,620	39%
Metal		58,230	61%

Swedish Hip Arthroplasty Register

Annual Report 2013

DATI COMPLESSIVI

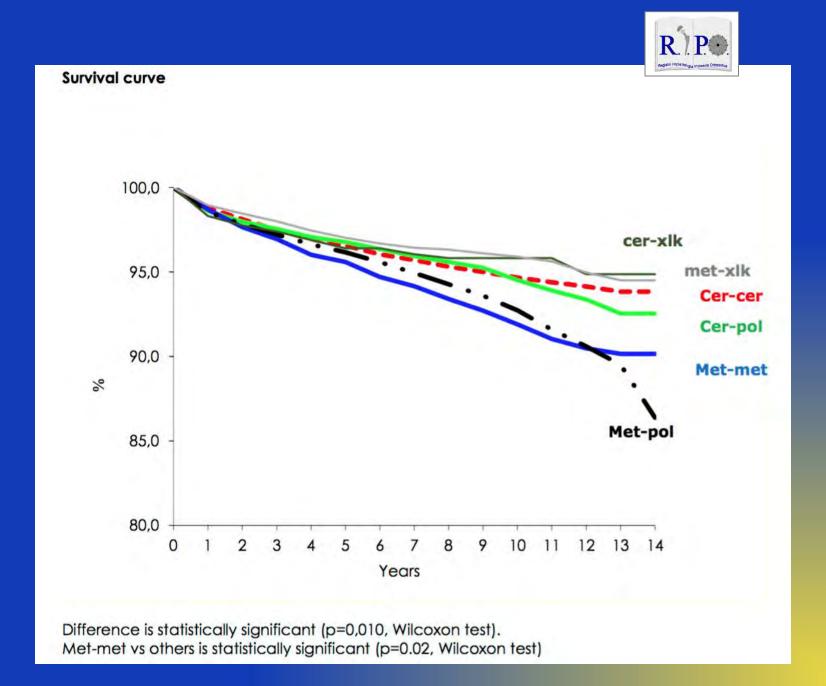
SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA

VERSIONE 1 DEL 2 GENNAIO 2015

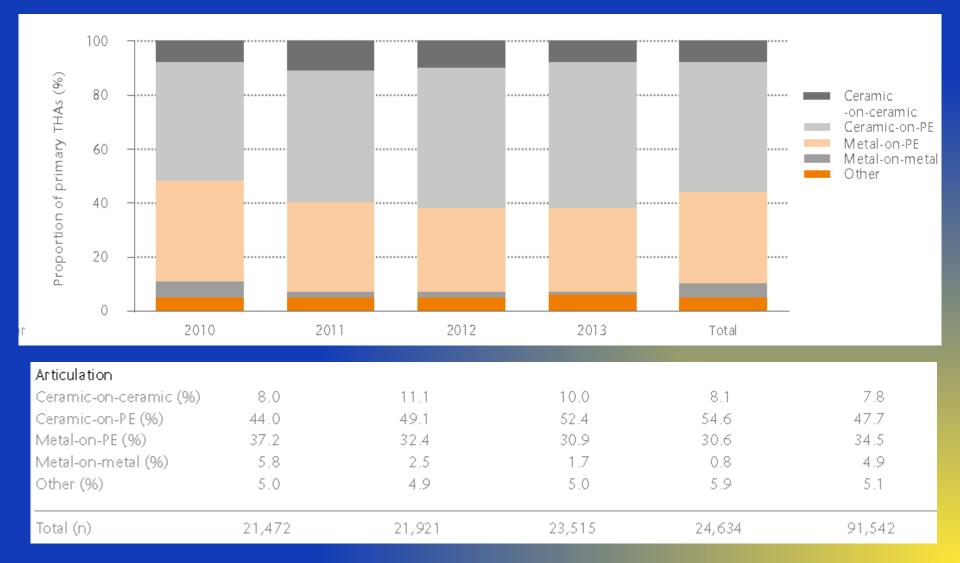
4.8 Articular couplings and head diameters

Number of primary total hip arthroplasty operations carried out on patients with admission date between 1st January 2000 and 31st December 2013, according to the **type of operation** and **articular coupling**.

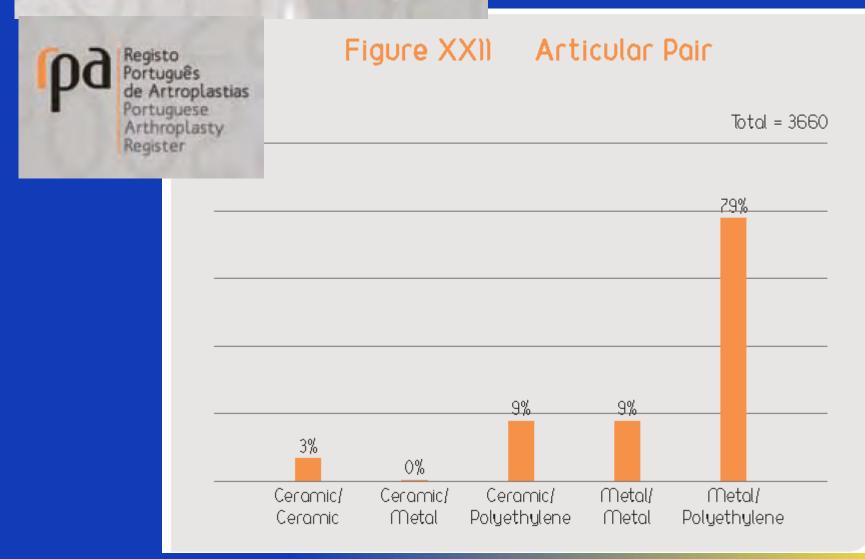
And and an entropy for the	Prin	nary	Total revision	
Articular coupling	Ν.	%	Ν.	%
Cer-cer	33.970	42,2	924	25,4
Met-poly	14.138	17,5	804	22,1
Cer-poly	11.372	14,1	767	21,1
Cer-X linked poly	7.187	8,9	457	12,6
Met-met	6.247	7,8	95	2,6
Met-X linked poly	5.848	7,3	497	13,7
Met-poly undefined*	826	1,0	52	1,4
Cer-poly undefined*	421	0,5	34	0,9
Biolox delta-met	222	0,3	4	-
Cerid-poly	180	0,2	-	-
Surface-treated met- Surface-treated metal	78	0,1		-
Oxinium-poly	64	0,1	2	0,1
Met-cer	3	0,0	÷	
Bionium Diamant-poly	2	0,0	1	0,0
Oxinium-cer	2	0,0	+	-
Total^	80.560	100,0	3.633	100,0


^310 missing data in primary surgery and 18 in total revision.

Percentage of elective THA according to articular coupling and class age


	Elective THA in 2001					
Age class	met-pol	cer-pol	cer-cer	met-met		
<40	9,1	21,2	47,0	22,7		
40-49	12,8	17,9	45,6	23,7		
50-59	23,6	23,6	34,0	18,7		
60-69	36,9	31,5	23.8	7,8		
70-79	51,9	36,1	10,9	1,1		
Over 80	65,6	30,9	3,4	0,0		

	Elective THA in 2013					
Age class	met-pol	cer-pol	cer-cer	met-met		
<40	2,0	13,8	84,2	0,0		
40-49	2,3	14,4	83,3	0,0		
50-59	3,0	15,2	81,7	0,1		
60-69	5,5	23,0	71,4	0,2		
70-79	13,5	32,9	53,3	0,2		
Over 80	28,0	45,4	26,0	0,7		



Insight into Quality & Safety

Netherland's Orthopaedic Association (NOV) Dutch Arthroplasty Register (LROI) www.lroi.nl

1st Annual Report June 2009 – May 2010

A Literature Review of the Association Between Wear Rate and Osteolysis in Total Hip Arthroplasty

John H. Dumbleton, PhD, DSc,* Michael T. Manley, PhD, + and Avram A. Edidin, PhD +

The literature indicates that the incidence of osteolysis increases with increased wear rate in the hip. Although volumetric wear is probably the key factor in the biologic response, review of published data must concentrate on linear wear because this is most often the measurement reported. With the caveat that larger heads produce greater wear volume than smaller heads for the same linear penetration, the literature suggests that <u>osteolysis is infrequent when wear rates are <0.1 mm/y and almost absent <0.05 mm/y</u>. For practical purposes, we suggest that a hip bearing wear rate of 0.1 mm/y can be taken as a wear threshold for polyethylene; below this level, osteolysis is rare, and above this level, the risk of osteolysis increases substantially.

• Sugano al 1995 0,1 mm/y	57 hip	alumina	10 y
• Cales 2000 0,1		zir	
• Dambleto al 2002 0,1	2	CoCr	
• Kim 2005 0,08/0,17	52 pz	zir/CoCr	7,1 y
• Kray al 2006 0,005/0,060	30/30 pz	zir/CoCr	4 y

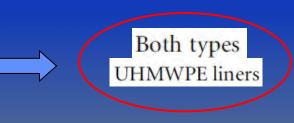
Long-Term Performance of Ceramic and Metal Femoral Heads on Conventional Polyethylene in Young and Active Patients

A Matched-Pair Analysis

Morteza Meftah, MD, Gregory G. Klingenstein, MD, Richard J. Yun, BS, Amar S. Ranawat, MD, and Chitranjan S. Ranawat, MD

ninety-one alumina ceramic femoral heads (CeramTec) and 157 cobaltcnromum metal heads (DePuy, Warsaw, Indiana), all 28 mm in diameter, were implanted and followed prospectively for a minimum of fifteen years. Of this cohort, thirty-one pairs of alumina ceramic and metal femoral heads (in fortynine patients) were matched on the basis of age (within two years), sex, body weight (within 5 lb [2.25 kg]), diagnosis, and activity level (within a 1-point difference on the activity score of the University of California Los Angeles

TABLE II Comparative Radiographic Data on Ceramic and Metal Heads Showing Similar Component Orientation with Significantly Less Wear in the Ceramic Group


	Ceramic	Metal	P Value
Antonio de Alex			4
Anteversion (deg)	44.1.4	11 ± 5	1
Mean and stand. dev.	11 ± 4		
Range	5-18	4-19	
Inclination (deg)			1
Mean and stand. dev.	37 ± 5	37 ± 4	
Range	27-48	29-44	
Wear (mm/yr)			0.0015
Mean and stand. dev.	0.086 ± 0.05	0.137 ± 0.05	
Range	0.004-0.19	0.03-0.25	
Radiographic osteolysis (no. of hips)	5	6	1
Revision or reoperation for osteolysis and/or loosening*	1†	3#	0.6

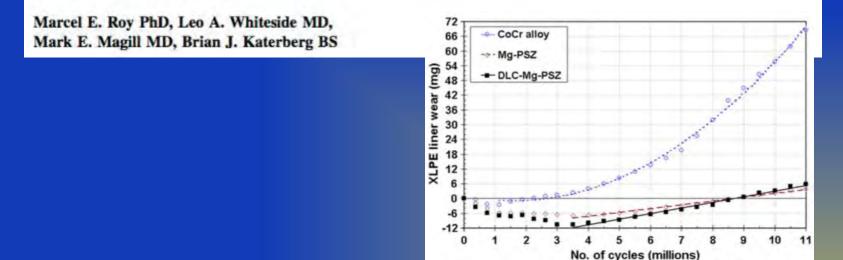
*Although the difference was not significant, there were more revisions in the metal group. †Reoperation. ‡Revisions.

Investigation performed at the Hospital for Special Surgery,

New York, NY

J Bone Joint Surg Am. 2013;95:1193-7

ran	nic femoral heads were found
to i	mpart a clinical advantage
ov	er metal components, with
low	ver rates of wear and subsequent
	osteolysis and/or loosening.


Table 7.3 Summary of Linear Penetration Reported for Ceramic-on-HXLPE Studies

Ceramic Head Material (Manufacturer)	Mean (mm/year; Standard Error)	HXLPE Liner	Study	Study Type
Oxidized zirconium (Oxinium, Smith and Nephew)	0.041 (0.011)	Longevity	Garvin et al. [157]	Cohort
Zirconia (PHS head, Kyocera Corp)	0.067 (0.009)	Aeonian	lse et al. [155]	RCT
Zirconia (HHZ head, Kobelco, Kobe Steel Ltd.)	0.059 (0.006)	Aeonian	lse et al. [155]	RCT
Zirconia (3Y-TZP, Japan Medical Material)	0.000 (0.005)	Aeonian	Kawate et al. [156]	RCT
Zirconia (NGK Spark Plug)	0.030 (0.002)	Longevity	Nakahara et al. [154]	сон
Alumina (Kyocera Medical)	0.100 (0.006)	Aeonian	Oonishi et al. [153]	сон
Zirconia-toughened Alumina (ZTA) (Biolox® delta, CeramTec)	0.006 (0.014)	Х3	Meftah et al. [158]	сон
Alumina (Biolox® forte, CeramTec)	0.031 (0.004)	Marathon	Kim et al. [159]	RCT
Oxidized zirconium (Oxinium™, Smith and Nephew)	0.061 (0.008)	XLPE	Morison et al. [160]	RCT
Alumina (Biolox® forte, CeramTec)	0.019 (0.013)	Crossfire	Epinette and Manley [161]	COH

Clin Orthop Relat Res (2011) 469:2337-2345 DOI 10.1007/s11999-011-1800-7

BASIC RESEARCH

Reduced Wear of Cross-linked UHMWPE Using Magnesia-stabilized Zirconia Femoral Heads in a Hip Simulator

Ceramic materials induced less wear than CoCr femoral heads in simulator studies [11, 39, 43], but recent clinical studies reported no difference in wear of XLPE liners bearing against Y-TZP and CoCr femoral heads ORIGINAL ARTICLE

Clinical Comparison of Polyethylene Wear with Zirconia or Cobalt-Chromium Femoral Heads

Maiken Stilling MD, Kjeld Anton Nielsen MD, Kjeld Søballe MD, DMSc, Ole Rahbek MD, PhD

Input variable	Zirconia heads	Cobalt-chromium heads
Number of hips	36	33
Gender (male/female)	22/14	19/14
Side (right/left)	18/18	19/14
Mean age at operation (years)	53.5 (43-64)	51.5 (29-60)
Mean cup size (mm)	56.5 (50-62)	60 (50-62)
Mean liner thickness (mm)	9.38 (6.8-11.8)	9.25 (6.8-11.8)
Mean weight (kg)	79 (58-112)	77 (55-120)
Mean radiographic followup (months)	58 (24-77)	58 (37-72)
Mean preoperative Harris hip score (maximum, 100 points)	54	57
Mean Harris hip score 3 months postoperatively (maximum, 100 points)	88	92

The published midterm wear results for Zr are contradictory, but our data do not suggest any advantage of Zr compared with CoCr heads.

Minimum Five-Year Follow-Up Wear Measurement of Longevity Highly Cross-Linked Polyethylene Cup Against Cobalt-Chromium or Zirconia Heads

Ichiro Nakahara, MD, * Nobuo Nakamura, MD, PhD, † Takashi Nishii, MD, PhD, *‡ Hidenobu Miki, MD, PhD, § Takashi Sakai, MD, PhD, * and Nobuhiko Sugano, MD, PhD *‡

	Zirconia	Co-Cr	P
No. of hips	47	47	
Sex (male/female)	9/38	6/41	.40
Age at operation (y)	57.5 ± 9.5 (27-76)	56.9 ± 10.5 (27-75)	.75
Underlying disease			.67
Secondary OA	40	39	
ON	1	3	
Primary OA	2	2	
RDC	3	1	
RA	1	2	
Duration of follow-up (y)	6.7 ± 0.6 (5.0-8.2)	6.6 ± 0.5 (5.0-7.8)	.38
BMI	23.5 ± 3.8 (15.6-34.5)	23.5 ± 4.2 (18.3-35.0)	.95
Acetabular cup inclination (°)	40.7 ± 5.0 (32.3-50.7)	39.4 ± 5.0 (30.4-50.2)	.21
Acetabular cup anteversion (°)	22.6 ± 7.1 (7.5-34.7)	21.1 ± 6.8 (5.4-35.7)	.28

In conclusion, after the minimum 5-year follow-up, steady-state wear rate of Longevity highly cross-linked polyethylene was almost zero; and no advantage was seen for the 26-mm zirconia head compared with the cobalt-chromium head in this period.

Differences in Highly Cross-Linked Polyethylene Wear Between Zirconia and Cobalt-Chromium Femoral Heads in Japanese Patients

A prospective, randomized study

Kenji Kawate, MD,* Tetsuji Ohmura, MD,† Ikuo Kawahara, MD,* Katsuya Tamai, MD,‡ Tomoyuki Ueha, MD,* and Kazuo Takemura, MD§

Years	Volumetric Wear (mm ³)			
	Zirconia Head	Cobalt-Chromium Head	P	
0-1	32.7 = 50.1	61.2 ± 67.0	.104	
1-2	9.8 ± 46.6	-6.1 ± 64.7		
2-3	-4.5 ± 52.9	9.4 ± 55.1		
3-4	13.8 ± 39.0	-8.9 ± 53.4		
4-5	-18.0 ± 34.4	8.9±45.5		
Mean annual wear (1-5)	1.1 ± 8.5	1.4 ± 13.5	.254	

mance. This study indicates that <u>zirconia head offers no</u> <u>benefits over metal head in terms of wear reduction at 5</u> years in Japanese patients who have lightweight and thin polyethylene liners. Longer follow-up is required to evaluate if those ceramic heads in association with highly cross-linked polyethylenes are associated with less occurrence of osteolysis in our patients.

Wear Resistant Performance of Highly Cross-Linked and Annealed Ultra-High Molecular Weight Polyethylene against Ceramic Heads in Total Hip Arthroplasty JOURNAL OF ORTHOPAEDIC RESEARCH DECEMBER 2012

Taishi Sato, Yasuharu Nakashima, Mio Akiyama, Takuaki Yamamoto, Taro Mawatari, Takashi Itokawa, Masanobu Ohishi, Goro Motomura, Masanobu Hirata, Yukihide Iwamoto

Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

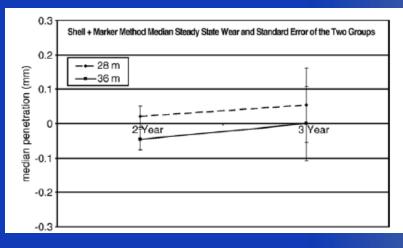
Table 1. Patient Demographics						
	CPE $(n = 58)$	XLPE $(n = 335)$				
Head materials (no. of the hip)						
Zirconia	40	275				
Alumina	24	72	m 11 a a		10. 1	
CoCr	0	20	Table 3. Com		and Steady Wea	ar Rate
Head size (no. of the hip)			between Polyeth	nylene Groups		
22 mm	64	90 (all zirconia)		CPE	XLPE	p-Value
26 mm	0	277		OL		p-value
			Creep (mm)	0.44 ± 0.29	0.19 ± 0.15	< 0.0001
			Steady wear	0.09 ± 0.06	0.0001 ± 0.03	< 0.0001

	Zirconia	Alumina	Co-Cr	p-Value
A) Creep		The second se		
CPE (mm)	0.39 ± 0.25	0.51 ± 0.034		0.19
XLPE (mm/year)	0.20 ± 0.17	0.21 ± 0.13	0.17 ± 0.09	0.31
B) Steady wear rate				
CPE (mm)	0.115 ± 0.063	0.048 ± 0.055		< 0.000
XLPE (mm/year)	0.0008 ± 0.033	-0.0007 ± 0.037	-0.009 ± 0.035	0.45

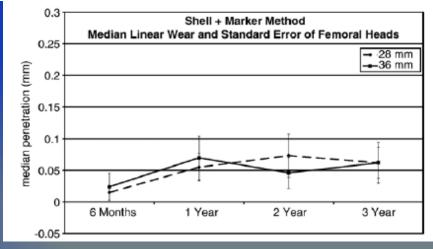
(Both XLPE creep and
L	
of CPE.	Zirconia femoral heads resulted in significant-
ly more v	wear than alumina in CPE, whereas no differ-
ence was	s found among head materials in XLPE. This

is the first study comparing zirconia and alumina heads against XLPE resulting in no difference of wear rate with an average of 6 years follow-up. Head size and implantation period did not show any effects on XLPE wear rates.

rate (mm/year)


Radiostereometric Analysis Comparison of Wear of Highly Cross-Linked Polyethylene Against <u>36- vs 28-mm</u> Femoral Heads

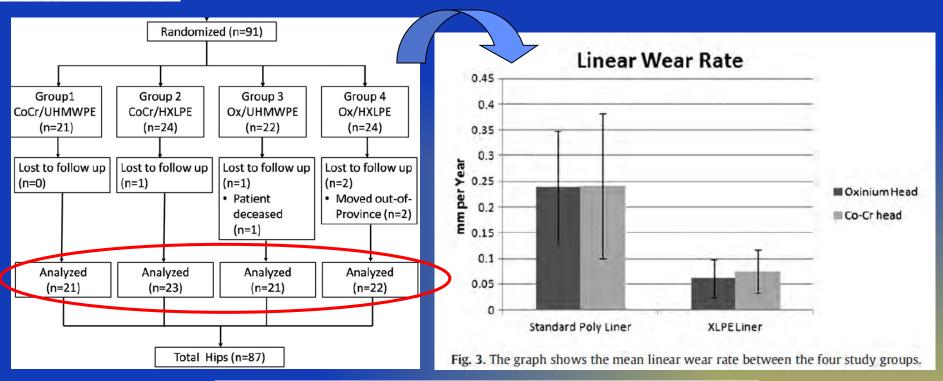
Charles R. Bragdon, PhD, *† Meridith E. Greene, BS, *† Andrew A. Freiberg, MD, *† William H. Harris, MD, ‡ and Henrik Malchau, MD *†


The Journal of Arthroplasty Vol. 22 No. 6 Suppl. 2 2007

Sixteen patients received cementless Trilogy Acetabular components (Zimmer Inc, Warsaw, Ind) with 28-mmdiameter femoral heads, and 14 patients received the same type of components with a 36-mm femoral head diameter.

Fig. 3. Median steady state wear and SE within the 2 groups of patients using the shell + marker RSA method.

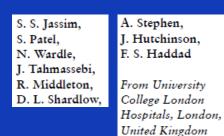
Fig. 2. Median superior penetration and SE of femoral heads within the 2 groups of patients using the shell + marker RSA method.

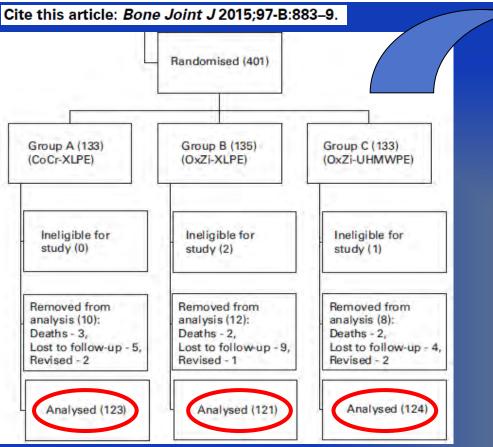

In this study, using the most precise method of radiographic measurement to evaluate the use of a 36mm-diameter femoral head against highly cross-linked polyethylene, we found no difference in the superior penetration of the femoral head at 3 years compared with the use of a 28-mm femoral head.

A Randomized Controlled Trial Comparing Oxinium and Cobalt-Chrome on Standard and Cross-Linked Polyethylene The Journal of Arthroplasty

Zachary A. Morison, MSc^a, Sunit Patil, MD, FRCS(Ed)^b, Habeeb A. Khan, MBBS^a, Earl R. Bogoch, MD, FRCS(C)^a, Emil H. Schemitsch, MD, FRCS(C)^a, James P. Waddell, MD,

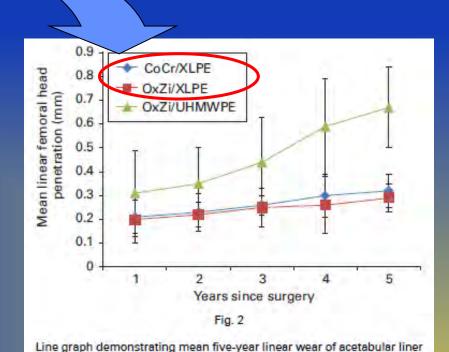
Accepted 10 April 2014


The current data suggest that total hip arthroplasty utilizing Oxinium and HXLPE femoral heads is safe and effective. Our findings demonstrate that HXLPE results in approximately three times less wear than the standard UHMWPE. These findings are in-line with most current literature on HXLPE. Conversely, we did not find a significant reduction in linear wear rate by using Oxinium in place of cobalt-chrome femoral heads at early follow-up.



Months after operation

Five-year comparison of wear using oxidised zirconium and cobalt–chrome femoral heads in total hip arthroplasty


A MULTICENTRE RANDOMISED CONTROLLED TRIAL

In conclusion, this study has demonstrated that OxZi femoral heads are safe with low rates of wear when coupled with XLPE. At five years follow-up, there are no significant differences between its wear profile and that of CoCr against XLPE. It appears that the choice of material of the acetabular bearing is more important than the choice of femoral head bearing.

polyethylene (UHMWPE) (standard deviation in error bars)

for groups of Cobalt-chrome (CoCr)/cross-linked polyethylene (XLPE),

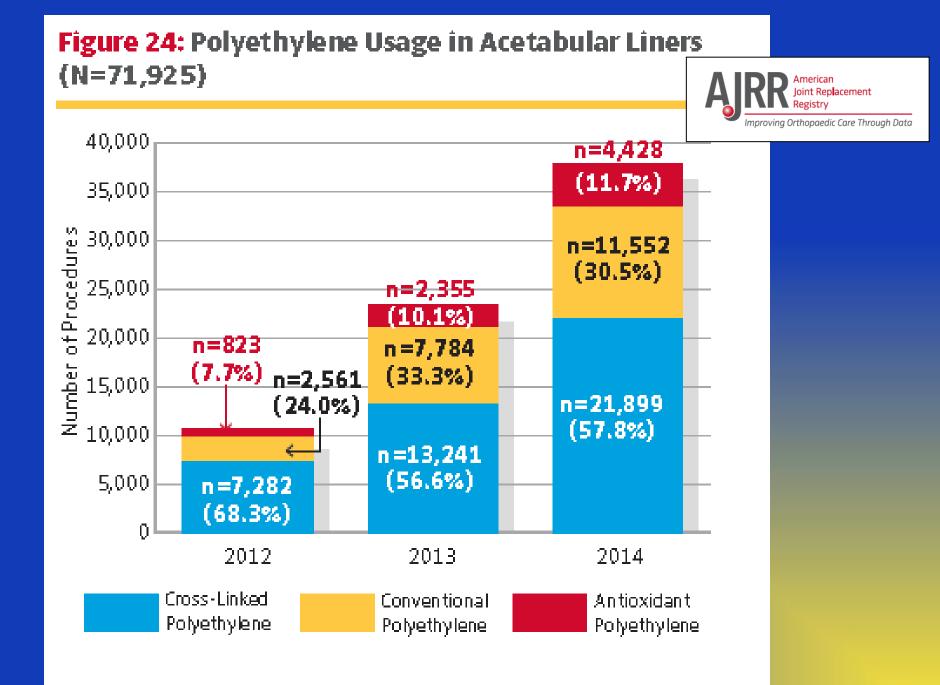
Oxidised zirconium (OxZi)/XLPE and OxZi/ultra-high molecular weight

■ HIP

Prosthesis met-pol							
Cause of revision	Rate		% distribut. of failure cause				
Aseptic loosening of the stem	131/11.581	1,1	20,6				
Aseptic loosening of the cup	126/11.581	1,1	19,8				
Recurrent prosthesis dislocation	125/11.581	1,1	19,6				
Global aseptic loosening	63/11.581	0,5	9,9				
Periprosthetic bone fracture	55/11.581	0,5	8,6				
Septic loosening	35/11.581	0,3	5,5				
Poly wear	25/11.581	0,2	3,9				
Pain without loosening	16/11.581	0,1	2,5				
Primary instability	9/11.581	0,1	1,4				
Breakage of prosthesis	9/11.581	0,1	1,4				
Other	9/11.581	0,1	1,4				
Unknown	34/11.581	0,3	5,3				
Total	637/11.581	5,5	100,0				

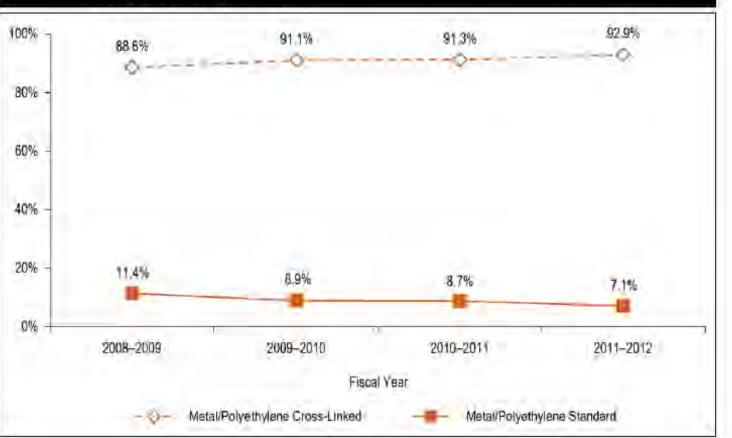
Prosthesis met-XLK								
Cause of revision	Rate	%	% distribut. of failure causes					
Periprosthetic bone fracture	39/4.501	0,9	28,9					
Recurrent prosthesis dislocation	29/4.501	0,6	21,5					
Aseptic loosening of the stem	15/4.501	0,3	11,1					
Aseptic loosening of the cup	14/4.501	0,3	10,4					
Global aseptic loosening	11/4.501	0,2	8,1					
Septic loosening	10/4.501	0,2	7,4					
Pain without loosening	4/4.501	0,1	3,0					
Primary instability	4/4.501	0,1	3,0					
Breakage of prosthesis	1/4.501	0,02	0,7					
Other	2/4.501	0,04	1,5					
Unknown	6/4.501	0,1	4,4					
Total	135/4.501	3,0	100,0					

CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Number 429, pp. 54–62 © 2004 Lippincott Williams & Wilkins


The Pros and Cons of Polyethylene Sterilization with Gamma Irradiation

Robert H. Hopper, Jr., PhD; C. Anderson Engh, Jr., MD; LaTonya B. Fowlkes; and Charles A. Engh, MD

	Change in	95% Confidence Interval		r ² Change with	
Factor	Change in Wear Rate (mm/year)	Lower Bound	Upper Bound	Additional Factor	p Value
Terminal sterilization with gamma-irradiation versus a noncross-linking		-	1.111		
gas-plasma chemical surface treatment	-0.085	-0.107	-0.063	0.118	< 0.001
One-year increase in age at surgery	-0.003	-0.004	-0.002	0.052	< 0.001
One-year increase in shelf life of gamma-in-air-sterilized Hylamer liners	+0.064	+0.039	+0.088	0.027	< 0.001
Unit increase in body mass index	-0.003	-0.005	-0.002	0.021	< 0.001
Increasing PE thickness by 1 mm	+0.006	+0.002	+0.009	0.020	0.001
Ceramic instead of CoCr femoral head	-0.032	-0.054	-0.009	0.012	0.005
Preoperative diagnosis of inflammatory arthritis instead of osteoarthritis	-0.046	-0.083	-0.010	0.008	0.01
One-year increase in shelf life of gamma-in-air-sterilized Enduron liners	+0.014	+0.001	+0.026	0.006	0.03
Male instead of female	NS			N/A	0.07
Using a Duraloc 1200 instead of a 100 cup	NS			N/A	0.16
Using Hylamer instead of Enduron	NS			N/A	0.22
Using a +4 mm lateralized linear instead of a neutral liner	NS			N/A	0.28
Gamma sterilization in barrier packaging instead of air	NS			N/A	0.30
Increasing radiographic follow-up by 1 year	NS			N/A	0.35
Using a lipped liner instead of a neutral liner	NS			N/A	0.41
Increasing cup abduction angle by 1°	NS			N/A	0.45
Using a 28-mm head instead of a 32-mm head	NS			N/A	0.50
Using a nonmodular 1-piece cup instead of a Duraloc 100 cup	NS			N/A	0.54
Using a lateral instead of a posterior approach	NS			N/A	0.55
Surgeon 2 instead of Surgeon 1	NS			N/A	0.68
Preoperative diagnosis of osteonecrosis instead of osteoarthritis	NS			N/A	0.77
Using a low (1.8–2.5 Mrad) dosage instead of standard (2.5–4.0 Mrad) dosage for gamma-barrier sterilization	NS			N/A	0.77
Preoperative diagnosis of trauma instead of osteoarthritis	NS			N/A	0.91
Preoperative diagnosis of hip dysplasia instead of osteoarthritis	NS			N/A	0.93
Increasing patient's body weight by 1 kilogram	NS			N/A	0.97


NS = Not significant, N/A = Not applicable; *Positive values indicate factors that increase the wear rate, whereas negative values designate factors that decreases the wear rate

HEAD MATERIAL WAS ONLY THE 6th MOST IMPORTANT FACTOR AND IT EXPLAINED APPROXIMATELY 1% OF THE VARIABILITY IN CLINICAL PENETRATION RATE

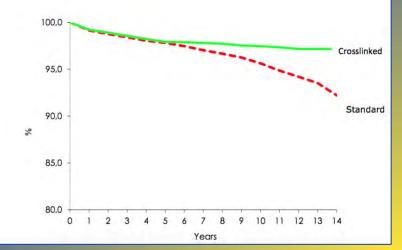
Hip and Knee Replacements in Canada: Canadian Joint Replacement Registry 2015 Annual Report

Figure 20: Types of Metal-on-Polyethylene Bearing Surfaces for Hip 2008–2009 to 2011–2012

Notes

The denominator for percentage calculations excludes records that have no information available on bearing surfaces. Bearing surfaces were as reported by data submitters.

Source


Canadian Joint Replacement Registry, 2008–2009 to 2011–2012, Canadian Institute for Health Information.

Percentage of total hip arthroplasty interventions between 2001 and 2013, according to the type of polyethylene used.

	Primary surgery						
Year of surgery	Standard poly	Crosslinked poly	Not de	fined	ooly		
2001	80,0	,0 16,1		3,8			
2002	83,6	14,6		1,8			
2003	82,4	16,5		1,1			
2004	79,1	20,4		0,5			
2005	76,4	22,6		1,0			
2006	75,5	24,3		0,2			
2007	71,7	28,1		0,2			
2008	64,8	35,0	9.9 Analysis of survival in pr	mary total hip	arthroplasty	according to type	es of polyeth
2009	55,1	44,9	and the second second		n.	% survival 14	
2010	46,7	53,3	Polyethylene	Ν.	revisions	yrs	c.i at 95%
2011	42,0	58,0	Standard	20654	700	92,2	90,9-93,
2012	25,6	74,4	Cross linked	9463	150	97,2	96,5-97,
2013	25,8	74,2	Survival curve				

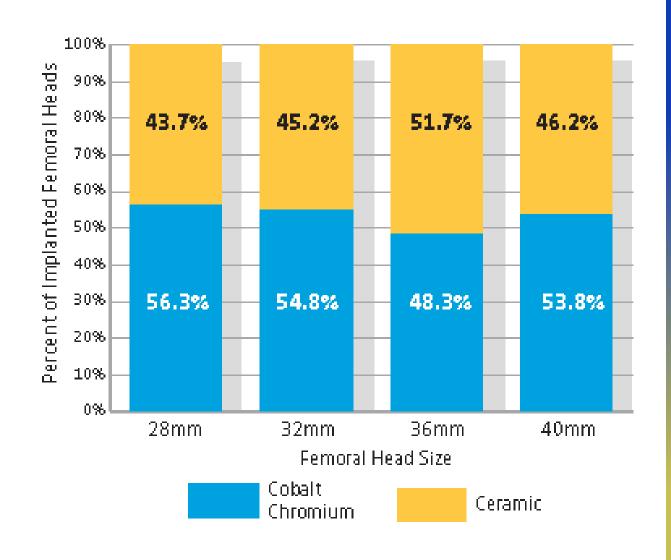
* missing label did not allow classification of poly

Lubricants 2015, 3, 413-436; doi:10.3390/lubricants3020413

OPEN ACCESS

ISSN 2075-4442 www.mdpi.com/journal/lubricants

Review


Wear Performance of UHMWPE and Reinforced UHMWPE Composites in Arthroplasty Applications: A Review

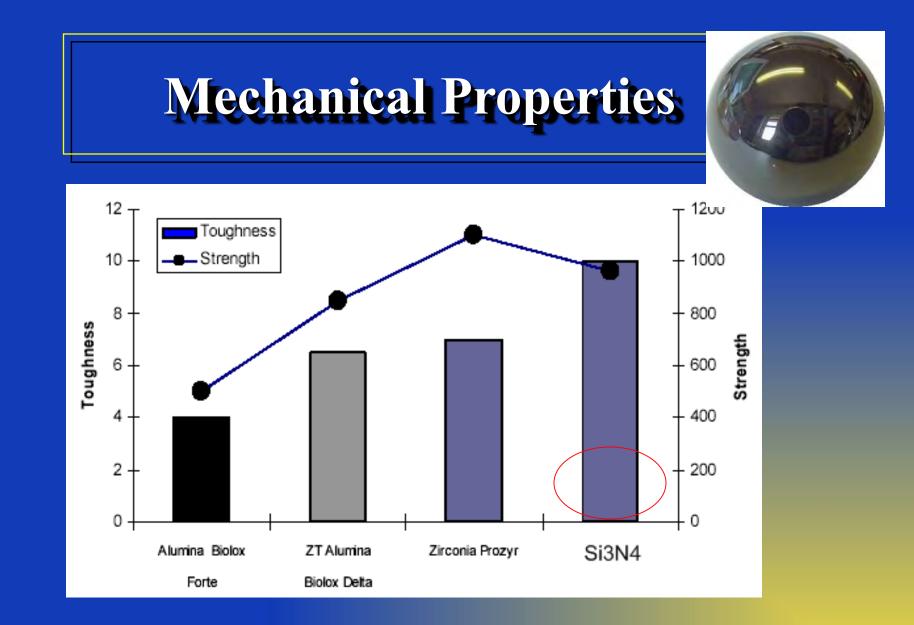
Juan C. Baena *, Jingping Wu and Zhongxiao Peng

School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney NSW 2052, Australia; E-Mails: j.p.wu@unsw.edu.au (J.W.); z.peng@unsw.edu.au (Z.P.)

performance of the material so its service life can be further extended. This paper has reviewed reported methods for improving the mechanical properties through creating a cross-linked structure, using an irradiation process with and without vitamin E, and by adding micron or nano-particles. Surface engineering techniques for the improvement of the lubrication conditions are also reviewed. Existing studies have demonstrated that cross-linked UHMWPE by gamma radiation is an effective way to significantly improve the wear resistance of the material from a wear rate of about 20 mm³ per million cycles of untreated material to close to a zero wear rate for gamma radiated to 280 kGy. Including fillers can also improve the mechanical properties and wear resistance. However, the reported improvement varies from 25% to 86% depending on different filler materials, their concentrations and/or directions. Similarly, according to the reported results, surface modifications can improve the wear resistance from 30% for the surface coating of diamond like carbon to 90% using ion beam surface modification method. As wear

Figure 22: Composition of Femoral Heads by Size (N=74,833)

Variat		Diameter	of the hea	d (mm) ii	n THA	
Year of surgery	<=28 cer	<=28 met	32 cer	32 met	>=36 cer	>=36 met
2000	44,0	52,3	1,1	1,4	0,0	1,2
2001	49,3	48,2	0,7	0,4	0,0	1,5
2002	52,1	46,1	0,9	0,1	0,0	0,8
2003	50,9	46,7	0,9	0,1	0,3	1,2
2004	51,1	41,6	3,2	0,6	1,3	2,2
2005	34,1	38,2	16,7	1,6	5,5	4,0
2006	23,3	33,6	19,0	2,0	14,9	7,3
2007	15,9	28,5	20,7	3,9	21,9	9,2
2008	14,4	21,8	20,5	3,7	29,7	9,9
2009	11,6	17,6	21,7	3,1	36,9	9,2
2010	8,6	10,2	24,1	4,7	44,8	7,7
2011	6,5	8,3	28,1	4,9	47,3	5,0
2012	7,0	5,5	29,1	3,8	51,6	3,1
2013	6,2	5,2	30.8	2,8	52.2	2,8


Heads made of alumina and biolox delta are marked with the initials "cer"; heads made of cobalt-based alloy and stainless steel are marked with the initials "met".

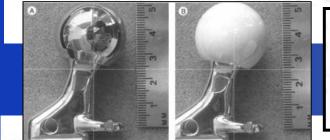
Fracture rate of third and fourth generation ceramic heads and liners from the manufacturer and the ANSM.							
	Third gene	ration	Forth generation				
and the second second	Liner	Head	Liner	Head			
Manufacturer (%)	0.032	0.021	0.028	0.002			
ANSM (%)	0.086	0.18	0.025	0.0013			

vs alumina 0,021%

ANSM: Agence nationale de sécurité du médicament et des produits de santé) (National Agency for Safety of Drugs and Medical Products).

Excellent combination of strength and toughness

Journal of Orthopaedic Research ?2 (2004) 250-259


Journal of Orthopaedic Research

www.elsevier.com/locate/orthres

Differences in the fretting corrosion of metal-metal and ceramic-metal modular junctions of total hip replacements

Nadim James Hallab *, Carlo Messina, Anastasia Skipor, Joshua J. Jacobs

Department of Orthopedie Surgers, Rash Production Sc. Lakos Medical Conter 1655 W. Congress Parkway, Chicago, IL 60612, USA

Clin Orthop Relat Res (2013) 471:3270-3282 DOI 10.1007/s11999-013-3096-2

risk of adverse local tissue reactions [3, 8, 16–18]. Our results suggest that by using a ceramic femoral head, Co and Cr fretting and corrosion from the modular head-neck taper may be mitigated, although not completely eliminated. However, implant component selection is but one Chinical Orthopactics and Related Research*

BASIC RESEARCH

Do Ceramic Femoral Heads Reduce Taper Fretting Corrosion in Hip Arthroplasty? A Retrieval Study

Steven M. Kurtz PhD, Sevi B. Kocagöz BS, Josa A. Hanzlik MS, Richard J. Underwood PhD, Jeremy L. Gilbert PhD, Daniel W. MacDonald MS, Gwo-Chin Lee MD, Michael A. Mont MD, Matthew J. Kraay MD, Gregg R. Klein MD, Javad Parvizi MD, Clare M. Rimnac PhD

ECONOMIC FEATURES

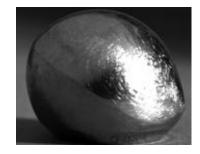
CONCLUSIONS

IS THERE ANY EVIDENCE THAT CERAMIC ON POLY IS BETTER THAN METAL ON POLY?

NO, THERE IS NOT

What to do in case of breakage?

Luigi Zagra



Disclosure

- Lima Corporate: grants for educational activity and research funds to the Hospital Department
- CeramTec, Biomet and DePuy: travelling and accommodation costs and grants for educational events
- Zimmer: travelling and accommodation costs for meetings

Ceramic breakage is still a reason of concern, as revision in case of ceramic fracture has been affected by poor results and severe complications due to third body wear, caused by ceramic fragments.

- Allain, JBJS Am, 2003
- Koo, J Arthroplasty, 2014
- Gozzini, Hip Int, 2002
- Ikeda, Muscle Nerve, 2010
- Sharma, Orthopaedics, 2013

In vivo fracture rates of ceramic (1/2003 – 6/2015)

- Heads BIOLOX® *Forte*:
 - 21 per 100,000 (**0.021%**)
 - BIOLOX[®] *Delta:* 1 per 100,000 (**0.001%**)

Liners

- BIOLOX[®] *Forte:* 46 per 100,000 (**0.046%**)
- BIOLOX[®] *Delta*:
 22 per 100,000 (0.021%)

Published data

Heads • Occasional occurrence of case reports

Liners • 0.013% - 1.1%

D'Antonio Journal of American Academy Orthop Surg, 17:63-68 (2009) Hamilton Clin Orthop Rel Res 468:358-66 (2010)

The head

- Impact (very rare)
- Fatigue (conical coupling mismatch, scratches on the taper, third body)

Dalla Pria P, Zagra L Breakage and noises in ceramic on ceramic couplings. *Eur Orthop Traumatol*, 1:53-59 (2010)

The head

- The breakage is sudden and complete, noisy
- The patient immediately realizes that something has happened
- Clear evidence in X-rays

Dalla Pria P, Zagra L Breakage and noises in ceramic on ceramic couplings. *Eur Orthop Traumatol*, 1:53-59 (2010)

The head

BioMed Research International Volume 2013, Article ID 157247, 8 pages

Review Article

Fracture of Ceramic Bearing Surfaces following Total Hip Replacement: A Systematic Review

Francesco Traina,¹ Marcello De Fine,¹ Alberto Di Martino,^{1,2} and Cesare Faldini¹

The only risk factor:

28 mm head with short neck

The liner

- Never related to trauma
- Subtle and underestimated event
- Not felt by the patient in the first stages
- Difficult to be detected on X-rays
- Can cause a secondary fracture of the head

Dalla Pria P, Zagra L Breakage and noises in ceramic on ceramic couplings. *Eur Orthop Traumatol*, 1:53-59 (2010)

The liner

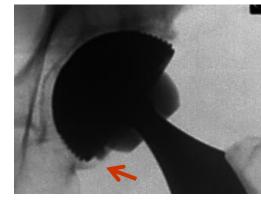
BioMed Research International Volume 2013, Article ID 157247, 8 pages

Review Article

Fracture of Ceramic Bearing Surfaces following Total Hip Replacement: A Systematic Review

Francesco Traina,¹ Marcello De Fine,¹ Alberto Di Martino,^{1,2} and Cesare Faldini¹

Risk factors:


- Misalignment during insertion or metal back damage
- Cup malposition (impingement and edge loading)

The Journal of Arthroplasty Vol. 27 No. 4 2012

Fracture Propagation Propensity of Ceramic Liners During Impingement-Subluxation

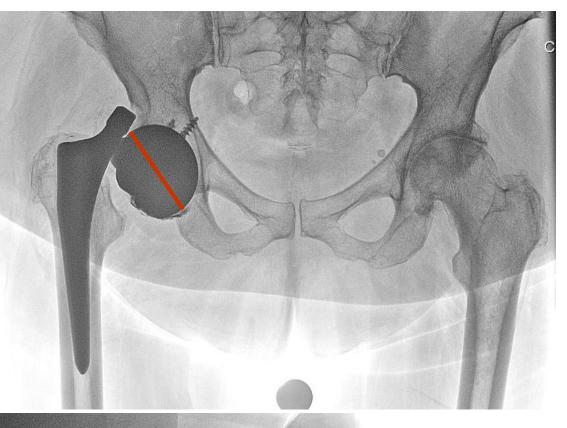
A Finite Element Exploration

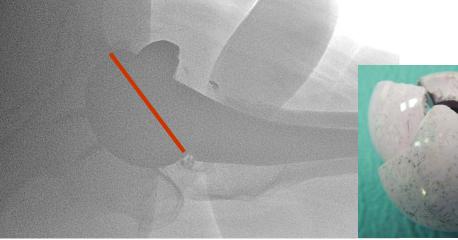
Jacob M. Elkins, MS,*† Douglas R. Pedersen, PhD,*† John J. Callaghan, MD,*†‡ and Thomas D. Brown, PhD*†

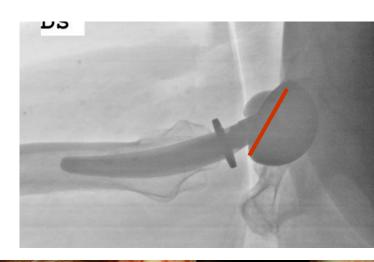

Risk factors for ceramic liner fracture

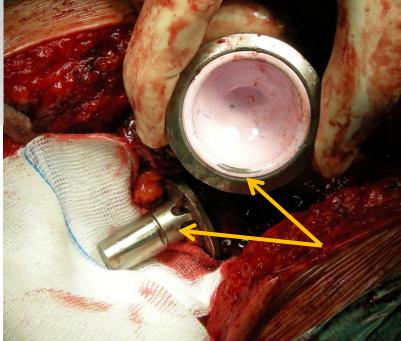
	Fractured group (26 hips)	Non-fractured group (49 hips)	р
Abduction angle			
mean/range	43,8(25-60,6)	40(20,1-61,9)	0,09
n° cases outside the range (%)	9(34,6%)	14(28,6%)	0,5
Anteversion angle			
mean/range	25,11(3,5-50)	22,06(10,1-48,2)	0,25
n° cases outside the range (%)	13(59,1%)	15(30,6%)	0,03
Off-set(mm)			
mean/range	39,4(19,5-60)	36(18,1-49,7)	0,08
Height of the center of rotation(mm)			
mean/range	22(7,5-38,5)	23,8(9,9-48,7)	0,3
n°cases (%)	4(15,4%)	9(18,4%)	0,7

Traina et al. Hip Int 2012; 22(06): 607-14






In case of sub-optimal positioning

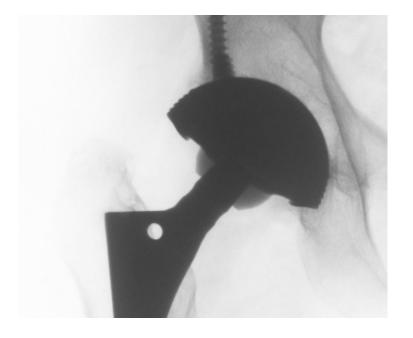

Strict clinical and X-rays f.u. In case of pain, increasing or late noises or doubt

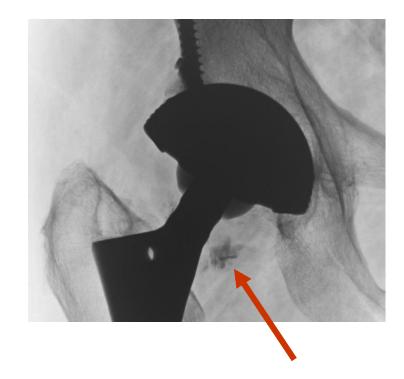
Early revision

Female, 61 years 1,5 year post op. Pain, hip noises

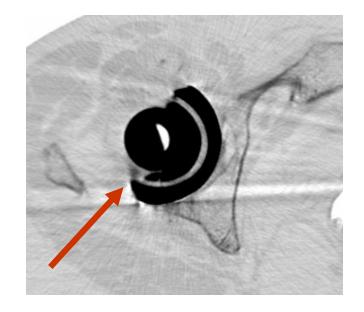
Jer - Marine

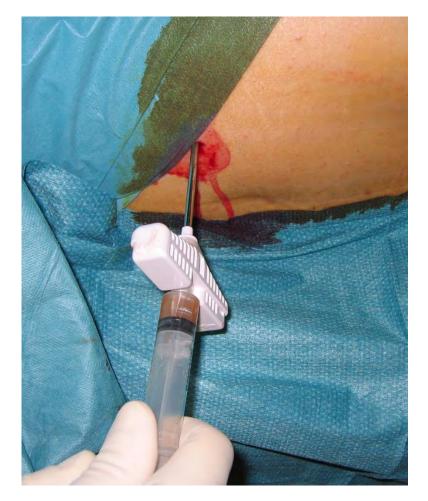
Correct orientation, Cer-XPE, 32 mm Biolox Option




1 year later

Diagnosis





CT scan can be helpful

Joint aspiration (late noise)

Size and number of particles (SEM)

The Journal of Bone & Joint Surgery - JBJS.org Volume 88-A - Supplement 4 - 2006

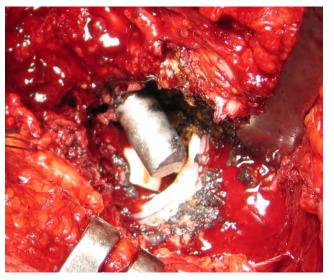
Early Diagnosis of Ceramic Liner Fracture

GUIDELINES BASED ON A TWELVE-YEAR CLINICAL EXPERIENCE

BY ALDO TONI, PHD, FRANCESCO TRAINA, MD, SUSANNA STEA, BSC, ALESSANDRA SUDANESE, MD, MANUELA VISENTIN, BSC, BARBARA BORDINI, MSC, AND STEFANO SQUARZONI, MD

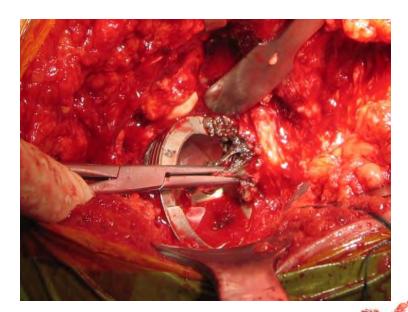
JOURNAL OF ORTHOPAEDIC RESEARCH AUGUST 2012

Synovial Fluid Microanalysis Allows Early Diagnosis of Ceramic Hip Prosthesis Damage

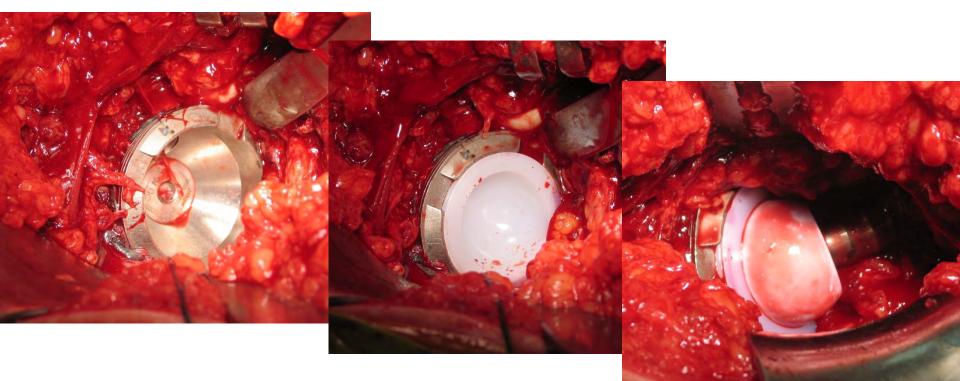

Susanna Stea,¹ Francesco Traina,² Alina Beraudi,¹ Monica Montesi,¹ Barbara Bordini,¹ Stefano Squarzoni,³ Alessandra Sudanese,² Aldo Toni^{1,2}

For two main reasons:

- The ceramic fragments can spread all around the tissues
- The metal components (taper) can be rapidly damaged with metallosis



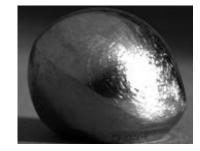
Surgical technique


- Removal of all the visible fragments
- "Aggressive" soft tissue debridement and synoviectomy

- In case of damaged metal back, of malposition or of a new ceramic liner: cup revision
- If the metal back is not damaged: new PE liner
- If the taper has not a major damage: new head on the stable stem

There is no consensus on the bearing of choice after ceramic fracture:

The Journal of Arthroplasty Vol. 25 No. 3 2010


Revision Total Hip Arthroplasty for Ceramic Head Fracture

A Long-Term Follow-Up

Vineet Sharma, MD, Amar S. Ranawat, MD, Vijay J. Rasquinha, MD, JoAnne Weiskopf, R-PAC, Holly Howard, BA, and Chitranjan S. Ranawat, MD

Metal on Poly

- Gozzini, Hip Int, 2002
- Hasegawa, Acta Orthop, 2006
- Ikeda, Muscle Nerve, 2010
- Sharma, Orthopaedics, 2013

Selection of a bearing couple in cases of revision after a fractured ceramic component.

Fig. 1: Ceramic particles inserted between the sliding surfaces during the test

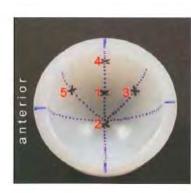
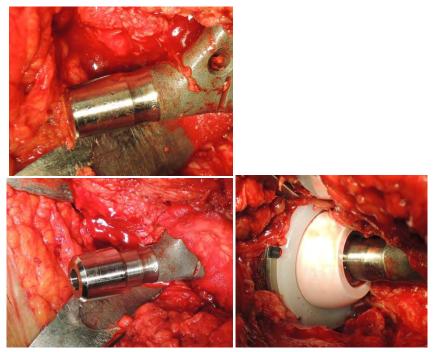


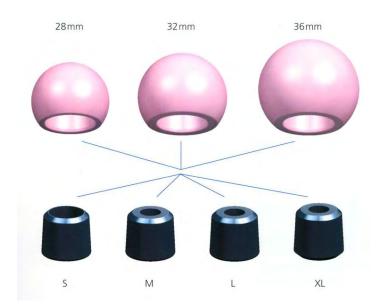
Fig. 2: Points 1-5, ceramic particles were inserted at these points before the start of the test

Fig. 3: Surface of BIOLOX®delta after 5 million cycles

"the use of Met-PE is contra-indicated"

of XPE insert after


315,5



When the stem is retained:

Revision ceramic heads

Biolox Option Delta®

International Orthopaedics (SICOT) (2013) 37:15-19 DOI 10.1007/s00264-012-1735-y

ORIGINAL PAPER

Modular sleeves with ceramic heads in isolated acetabular cup revision in younger patients—laboratory and experimental analysis of suitability and clinical outcomes

Peter Helwig • Lukas Konstantinidis • Anja Hirschmüller • Anke Bernstein • Oliver Hauschild • Norbert P. Südkamp • Björn G. Ochs

There is no consensus on the bearing of choice after ceramic fracture:

J Bone Joint Surg Am. 2011 Dec 21;93(24):e147.

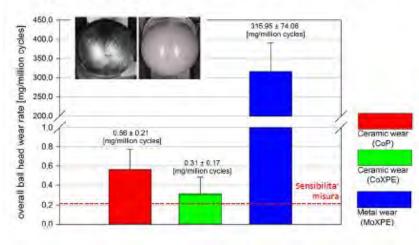
Revision of ceramic hip replacements for fracture of a ceramic component: AAOS exhibit selection.

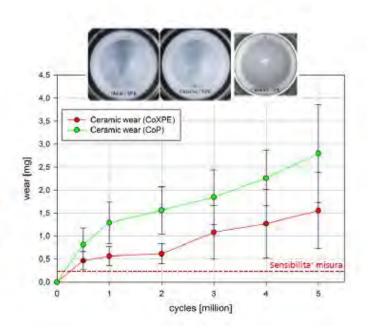
Traina F, Tassinari E, De Fine M, Bordini B, Toni A.

Laboratory for Medical Technology, Department of Hip and Knee Surgery, Rizzoli Orthopaedic Institute, Bologna, Italy. traina@tecno.ior.it

Couple chosen at revision	N. of patients	Average Follow-Up	Results	Case report
Cer-Cer	30	3,3 Yrs (1-14)	No osteolysis No radiografic failures 93.3% good results	G
Cer-Pol	2	7,5 Yrs (4-11)	No osteolysis No radiografic failures Both good results	500
Met-Pol	8	6,1 Yrs (4-9)	6 Poly wear + osteolysis 1 revision 87.5% bad results	

Cer-Cer for the scratch resistance to third body wear





What an Orthopedic Surgeon Should Know: Selection of a Bearing Couple in Case of Revision After a Fractured Ceramic Component

Martin Hintner, MSc,* Christian Kaddick, PhD,* Sylvia Usbeck,* Leslie Scheuber* and Robert M. Streicher, PhD*

There is no consensus on the bearing of choice after ceramic fracture:

J Bone Joint Surg Am. 2011 Dec 21;93(24):e147.

Revision of ceramic hip replacements for fracture of a ceramic component: AAOS exhibit selection.

Traina F, Tassinari E, De Fine M, Bordini B, Toni A.

Laboratory for Medical Technology, Department of Hip and Knee Surgery, Rizzoli Orthopaedic Institute, Bologna, Italy. traina@tecno.ior.it

Couple chosen at revision	N. of patients	Average Follow-Up	Results	Case report
Cer-Cer	30	3,3 Yrs (1-14)	No osteolysis No radiografic failures 93.3% good results	GE
Cer-Pol	2	7,5 Yrs (4-11)	No osteolysis No radiografic failures Both good results	500
Met-Pol	8	6,1 Yrs (4-9)	6 Poly wear + osteolysis 1 revision 87.5% bad results	

Cer-Poly

Ceramic on Poly

Small ceramic fragments can impact in PE, less damage

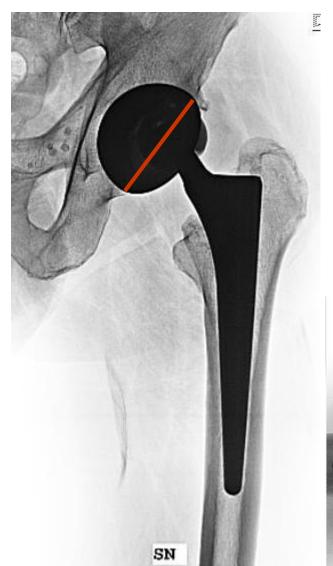
Ceramic on Poly

One more good reason:

Do not use a Tribology that already failed!

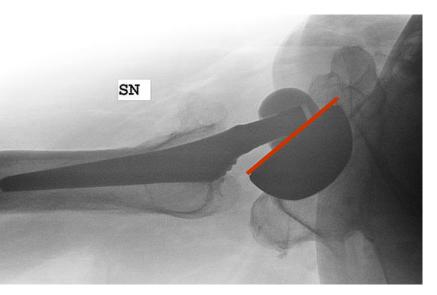
12 patients

revised for ceramic breakage between 2002-2013, with **Cer on PE**

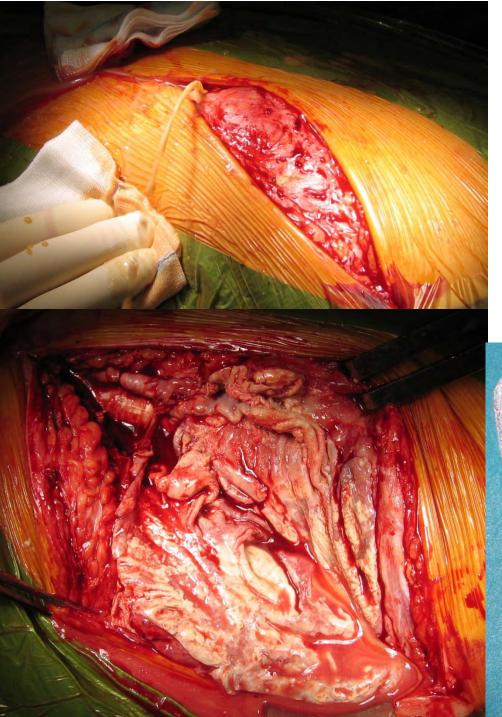

- 7 men and 5 women
- Mean age at revision 66,5 years (38-75)
- Mean of 9.1 (1.5-16) years after the indexed surgery

Breakage

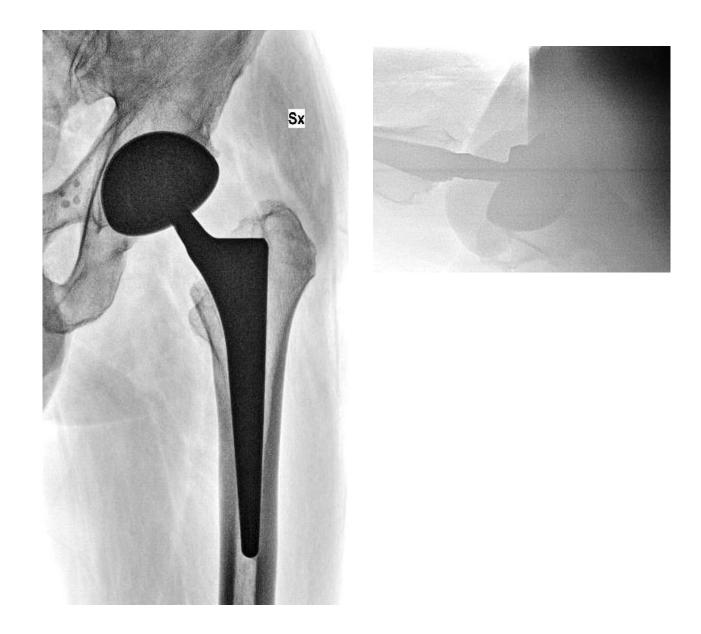
- 11 Biolox Forte, 1 Bionit
- All fractured liners:
 9: PE-cer sandwiches 28 mm,
 1: 32 mm,
 2: 36 mm



- 2 fractures also of head (28, 32 mm)
- 1 massive wear (Bionit, fracture and third body wear, "pseudotumor")

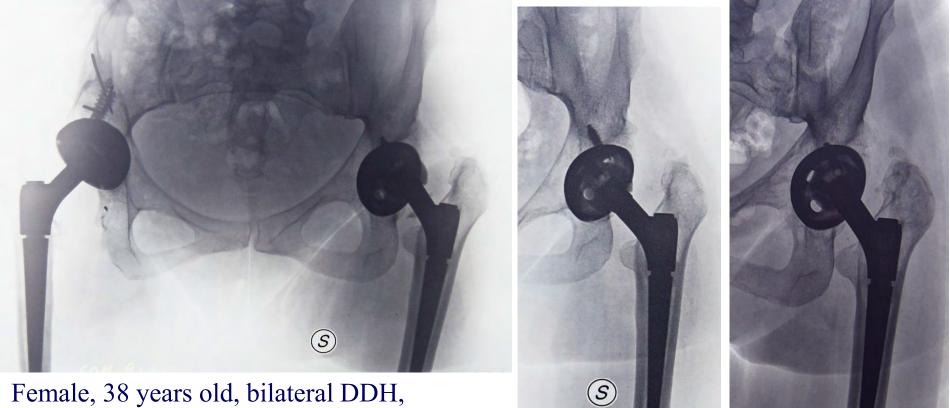


Malposition of the cup (anteversion and inclination)



Male, 67 years, 36 mm 1,5 year post op. No pain, 2 dislocations

Cup revision: correct orientation, Cer-XPE (Biolox Option)


Treatment

- 4 cup revisions: (1 malposition, 2 loosening, 1 uncertain stability)
- 8 liner exchanges (stable cups)
- In all the cases the head was replaced: (no major damage of the cone): 4 Biolox Forte 8 Biolox Delta Option

Mean f.u. 6,0 years (range 1.5 - 13 years)

- No cases of breakage of the head
- 1 major wear after 9 years (8.3% of failure) (clear malposition)
- No other cases of major osteolysis

Female, 38 years old, bilateral DDH, breakage of sandwich liner, 6 years post

PE Liner, Biolox Forte head

Wear 9 years later

Complications

- 4 cases of early dislocation (all in the liner exchange group, 50%, 1 revised)
- Probably due to underestimated impingement/malposition and aggressive soft tissues release

In case of ceramic breakage:

- Accurate fragments removal and synoviectomy,
- Replacement of damaged components,
- Correction of malpositioning and impingement are the key points

In case of ceramic breakage:

• At the moment there is no clear evidence of the bearing of choice, but <u>metal should be avoided</u>

In case of ceramic breakage:

- At the moment there is no clear evidence of the bearing of choice, but metal should be avoided
- Revision using Cer revision heads on PE liners

 (as alternative to Cer on Cer), can yield favorable results
 at mid-term f.u.

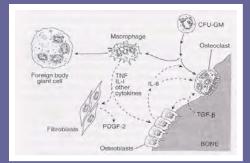
Â

The Bearing is the Key!

Professor Fares S Haddad BSc MD (Res) MCh (Orth) FRCS (Orth) FFSEM Consultant Hip and Knee Surgeon Divisional Clinical Director Surgical Specialties University College London Hospitals, UK Director, Institute of Sport, Exercise & Health University College London

Disclosures

Editor in Chief: Bone & Joint Journal I receive Royalties from, and Consult for: Smith & Nephew Corin MatOrtho I receive Institutional and Research Support from: Smith & Nephew Stryker Corin MatOrtho NIHR


The Bearing in THA

- The Major Obstacle to the "Hip for Life"
- We have resolved FIXATION
- In the hip, Patient Selection and the Surgical / Rehabilitation PATHWAY are relatively straightforward
- There is noise around the APPROACH, but in comparison to the bearing surface, it is effectively just noise
- Corrosion brings us back to the BEARING

We have Struggled to Address Bearing Failure

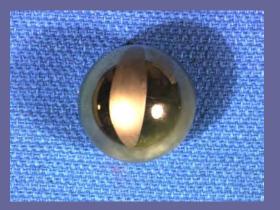
- Wear
- Osteolysis

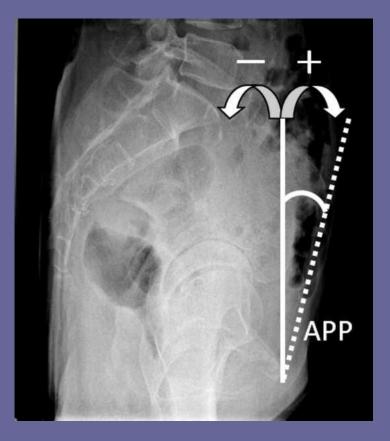
Aseptic Loosening

Some of our Recent Innovations have made the Matter Worse!

Even Ceramic has Failings

UNFORGIVING


- Ceramic can wear
- Brittle fracture risk
 - Rare but catastrophic
 - Ceramic particles
 - Future revisions compromised
- Squeaking
- Limited versatility
- Liner impingement
 Dislocation
- Few revision options

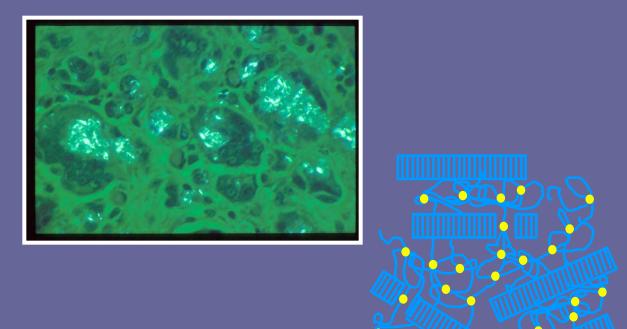


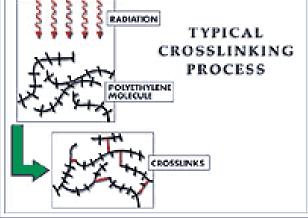
We are Still Struggling with the Target: We need Versatility

- Pelvic position changes when standing and in gait and in other activities
- The Target may be different for every patient

Bearing Surface Requirements

- Low Wear
- Low Corrosion Potential
- Allows for large head size up to 36mm
- Generalisable
 - Easy to insert easily taught / learnt
 - Compatible with minimal incision
- Versatile Intra-operative flexibility
 Must have choices
- Familiar
- Biocompatible
- Revisable
- Affordable
- SAFE

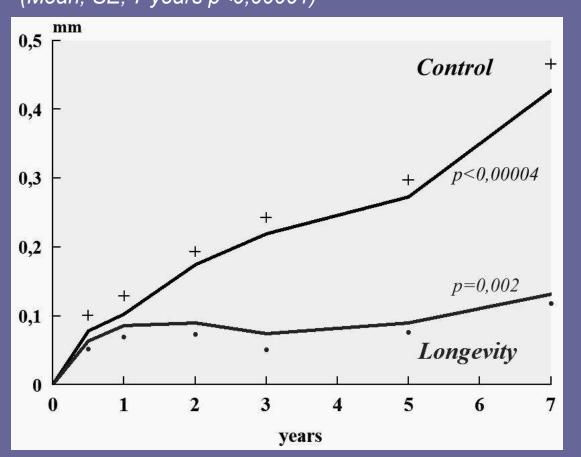



Hard Bearings are Unforgiving & are Creating NEW Complications

We Have a SAFE and VERSATILE Alternative

Oxinium on Cross Linked Polyethylene

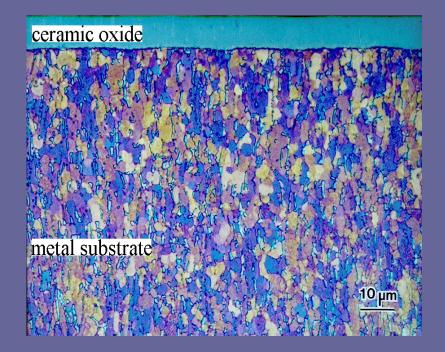
The Data for Highly Cross Linked Polyethylenes is Compelling



Clinical performance of highly cross-linked polyethylene

Johanson, P-E; Digas , G; Thanner; J; Herberts, P; Kärrholm, J

Total (3D) penetration (Mean, SE; 7 years p<0,00001)



56th Annual Meeting of the Orthopaedic Research Society

Oxinium Femoral Heads

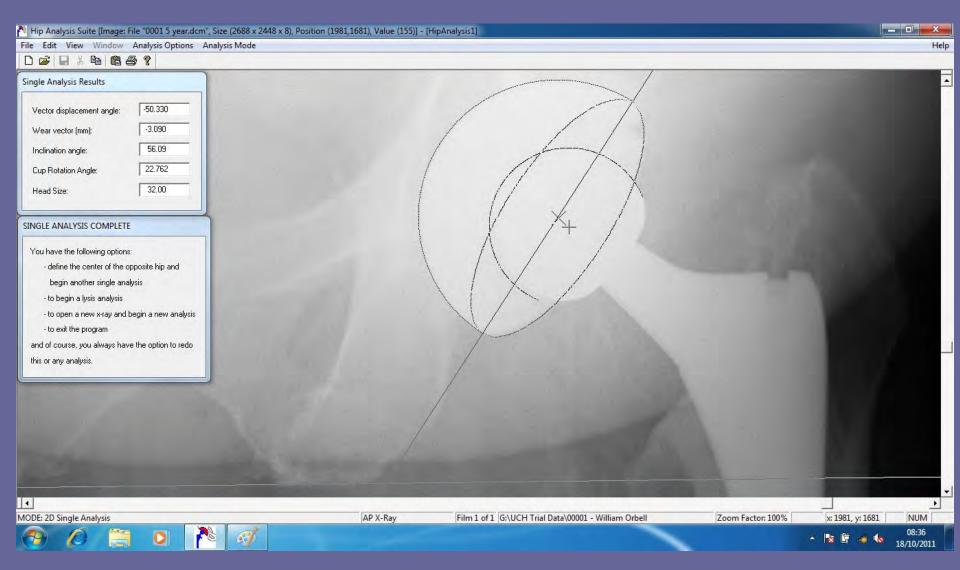
- Low friction
- High abrasion resistance
- Excellent damage tolerance
- No fractures
- Inert / Biocompatible
- Low risk
- Low wear

UK Clinical Data

- Clinical Multi-centre Prospective
 Randomised Wear Study set up in 2004
- UCH
- Bournemouth
- Yeovil
- Derby
- Liverpool
- 431 Hips recruited
 Minimum 5 year F-up

UK Clinical Data

- Randomisation to 3 groups
- 32mm head
- CoCr vs XLPE
- Oxinium vs XLPE
- Oxinium vs Conventional polyethylene
- CoCr vs Conventional polyethylene group not approved by ethics committee (high wear model)


Analysis

Central data collection

 Clinical and activity data collected by "blinded" physiotherapists

- Radiographic data analysed by two Orthopaedic Surgeons
 - Digitised technique
 - CT data
 - Martell technique

Wear Measurement

Demographics

- 431 subjects
- 60% female
- 40% male

- Mean age 62.3 (range 29-85)
- LOS 5.022 days
 - Female 5.087
 - Male 4.903

Diagnoses

- 81% OA
- 5% AVN
- 4% RA
- 10% Perthes, prev #, CDH or "other"

- Race
 - 90% white
 - -7% black / afro-carribean
 - -2% asian
 - -1% other

Demographics

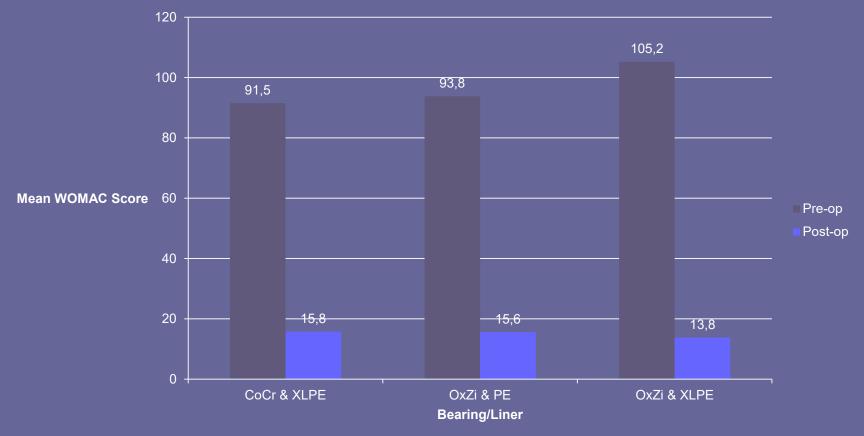
- 431 hips originally recruited
- 401(↓ 6.96%) are under review

- 401 patients have minimum 5 year data
 - Clinical data
 - Activity data
 - Radiographic data

Patients Withdrawn from Wear Study

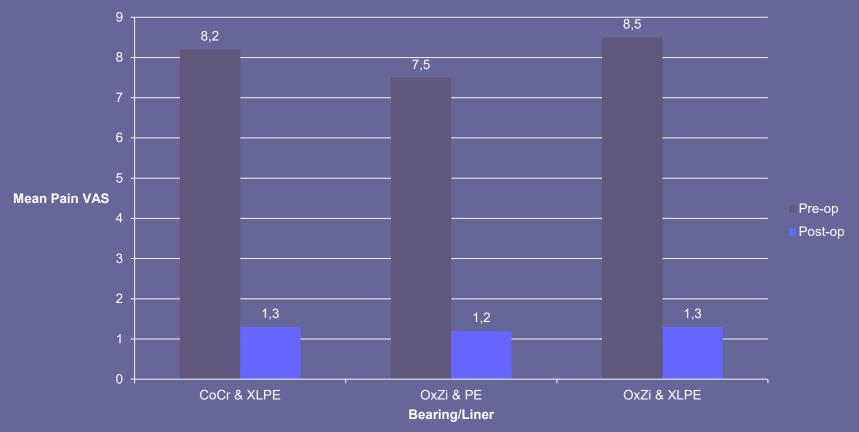
- 14 deaths
- 6 new diagnoses (> 2 years post-op) of co-morbidities requested to withdraw
- 2 dislocations with revision to 36mm head
- 2 deep infections with revision
- 3 periprosthetic fractures revised
- 5 requests to withdraw from outcome score collection but happy to continue to attend clinic for radiographs

- No episodes
 - Implant fracture
 - Catastrophic wear
- No allergic phenomena
- No reported clicking / squeaking
- No masses

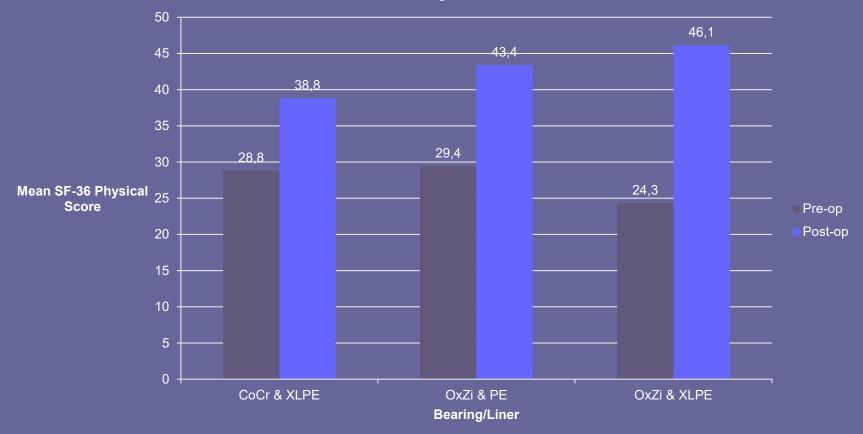

Rates of infection/dislocation
 – < 1%

Baseline Data

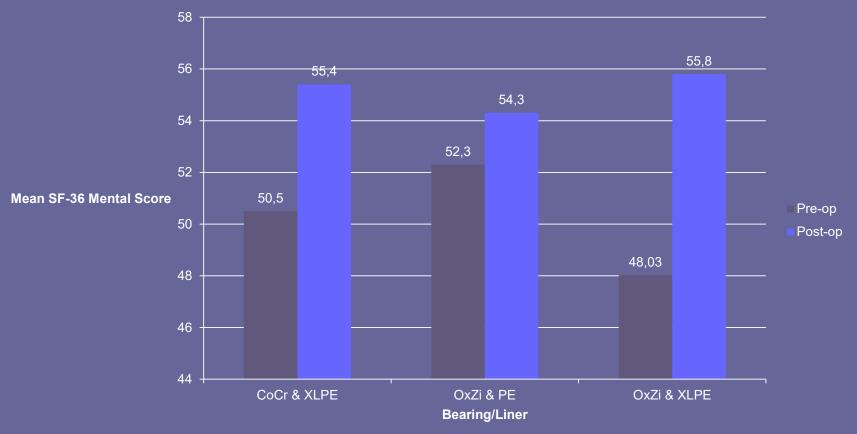
	CoCr & XLPE	OxZi & PE	OxZi & XLPE	Total
Number	129	136	136	401
Mean Age in Years (Range)	61 (42-73)	63 (53-73)	63 (47-85)	62.3 (42-85)
M:F	50:79	53:83	59:77	162:239


WOMAC

Mean WOMAC Score


PAIN

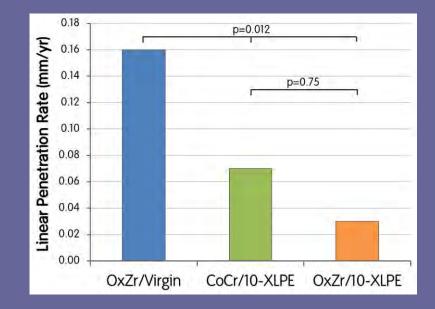
Mean Pain VAS


SF-36

Mean SF-36 Physical Scores

SF-36

Mean SF-36 Mental Scores


Radiographic Data

Years Since Surgery

Radiographic Data

- Conventional polyethylene exhibits significantly greater wear than XLPE
- There is a trend towards lower wear with Oxinium vs XLPE at 5 years but values are very low
- Analysis ongoing

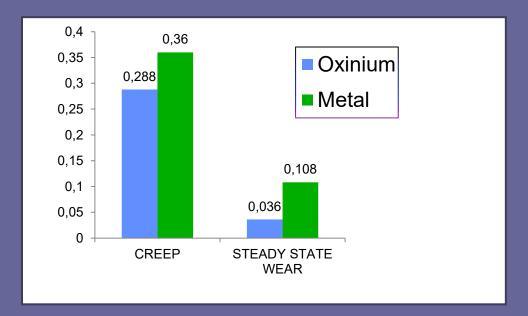
PRCT – 22mm Heads Moussa Hammadouche

EtO group

44 hips at a median FU of 6.8 years (5 – 8 years) Oxinium: 22 hips/ Metal: 22 hips

> XLPE group

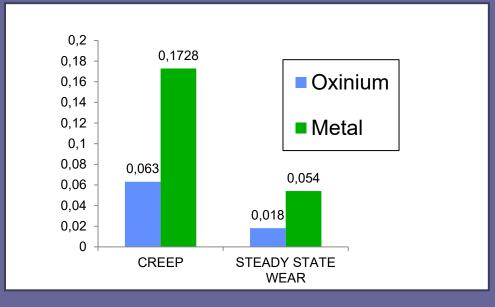
42 hips at a median FU of 6.0 years (4– 7 years) Oxinium: 21 hips/ Metal: 21 hips

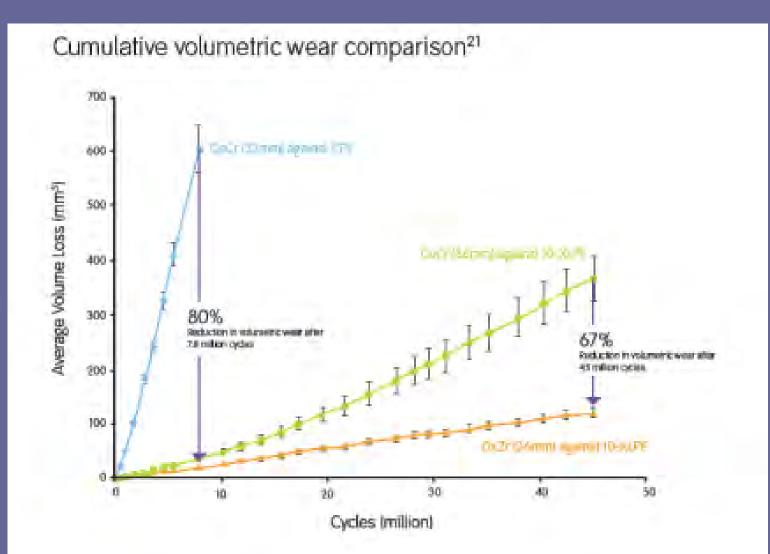

EtO group

Steady state wear:

- Oxinium: 0.04 mm/y

- Metal: 0.11 mm/y

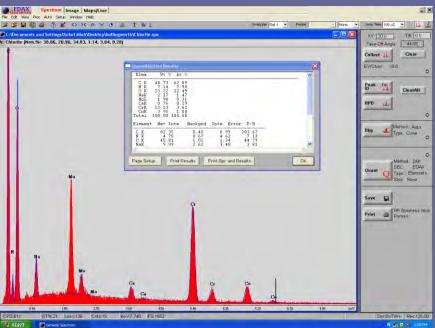

p = 0.01

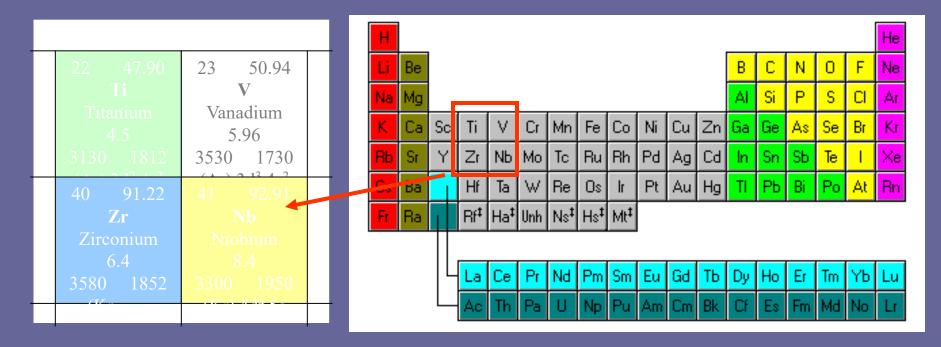

XLPE Group

Steady state wear:

- Oxinium: 0.02 mm/year
- Metal: 0.05 mm/year

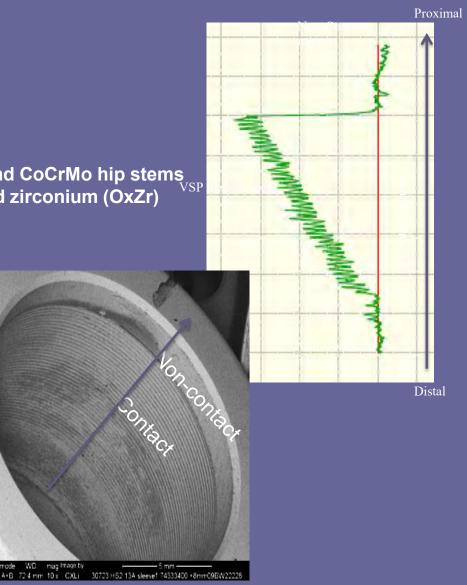
Fits in with the Laboratory Data


In 2015 Corrosion is a HUGE Issue



Biocompatibility / Metal Sensitivity

- Zirconium: one of most biocompatible metals
 - Ranked on passivation and biological response
 - Other four: niobium, titanium, tantalum, platinum
- Very low impurity content in Oxidized Zirconium
- Max specified impurity levels in alloys:
 - CoCrMo: 1% nickel
 - Ti-6AI-4V: 0.1% nickel
 - Zr-2.5Nb: Not detectable (0.0035% nickel)


Retrieval Analysis

Goldberg scoring (GS)

SEM

Vertical straightness profile (VSP)

- VSP measures depth of material loss
- Retrieved devices included Ti-6AI-4V and CoCrMo hip stems coupled with both CoCrMo and oxidized zirconium (OxZr) femoral heads
- Exclusions
 - Less than 1 week in vivo
 - Ceramic heads

Retrieval Analysis

- 227 retrievals total with 190 meeting inclusion criteria
 - CoCrMo (n=166), OxZr (n=24)
- No correlation:
 - Head size and GS (n=183, R^2 =0.23)
 - Time *in vivo* and GS (n=104, R²=0.11)
- Correlation
 - Head material and GS
 - OxZr lower score (1.9 ± 0.6), CoCrMo higher score (2.5 ± 0.9) (p<0.05)
 - Shorter and longer head offsets and GS
- Material loss was higher for CoCrMo (1.4 102.6 μm), OxZr (0)

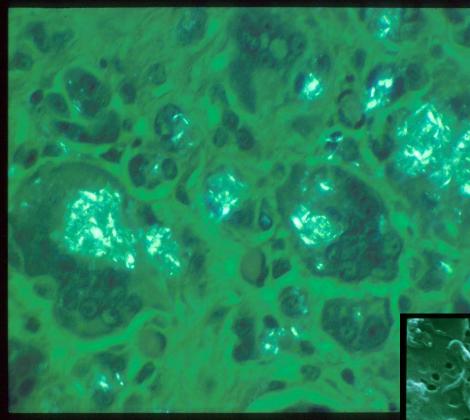
What is the Standard in 2015?

We have MANY Answers

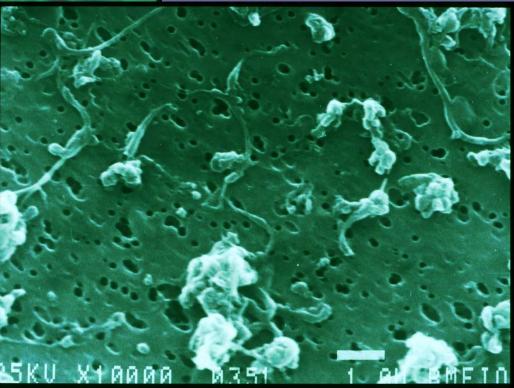
- Selection
- Expectations
- Approach
- Fixation
- Rehabilitation
- Function

WE just need to get the bearing RIGHT

The Clinical Reality of Modern Bearings

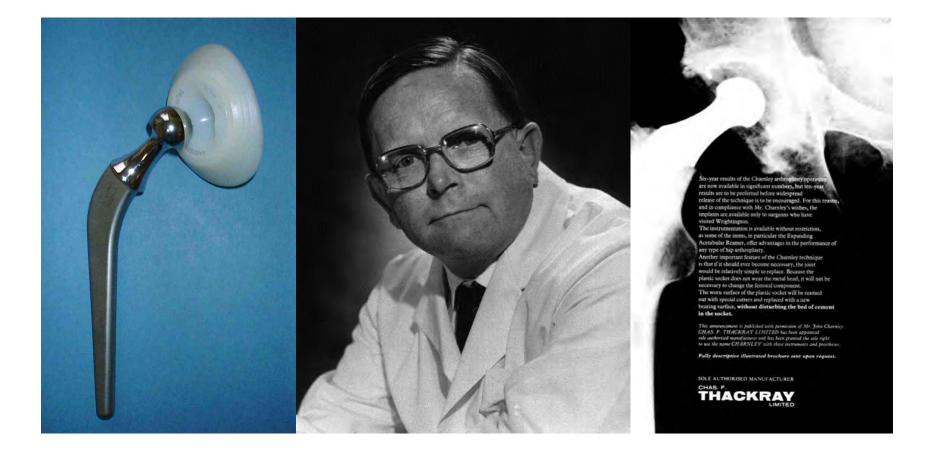

- Modern Bearings have better wear properties
 - In the lab
 - Clinically
- The desire for larger head sizes has accelerated the need to improve the bearing
- Our knowledge is rapidly increasing
- Surgical technique remains critical
- There is no single perfect bearing couple yet
 - Units may use several bearing couples tailored to individual circumstances BUT we can make a very strong argument for VERILAST as the standard

VERLIAST: Oxinium on XLPE


- Familiar
 - No learning curve
 - No special techniques
 - No need for higher precision
- Adaptable
 - Liner and head options
 - Head length / offset
 - Compatible with minimal incision
- Forgiving
 - Impingement more benign
 - No stripe wear
 - More generalisable
- Economically viable
- Revisable
- BIOCOMPATIBLE
- LOW WEAR IN VIVO
- SAFE

XLPE: clinical implications of different polyethylenes

Patrizio Caldora MD


Chief Department Orthopaedic and Traumatology S Donato Hospital Arezzo S Margherita Hospital Cortona (Ar)

The Gold Standard in 1975

High Density Poly-(CH₂=CH₂)

Twenty-five-Year Survivorship of Two Thousand Consecutive Primary Charnley Total Hip Replacements

FACTORS AFFECTING SURVIVORSHIP OF ACETABULAR AND FEMORAL COMPONENTS BY DANIEL J. BERRY, MD, W. SCOTT HARMSEN, MS, MIGUEL E. CABANELA, MD, AND BERNARD F. MORREY, MD Investigation performed at the Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota

80% Survivorship

Copyright © 2011 Swedish Hip Arthroplasty Register

Older than 75 years

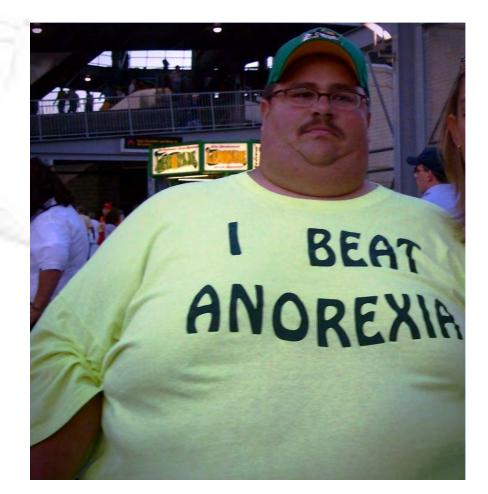
all observations, 1992-2010

Clinical results for young patients

Younger than 50 years

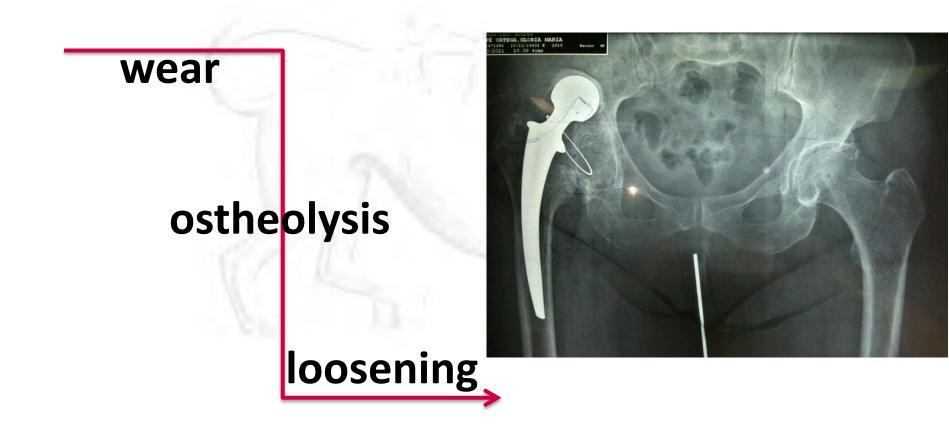
percent not revised

all observations, 1992-2010


100 100 95 95 90 90 percent not revised 85 85 Copyright© 2011 Swedish Hip Arthroplasty Register 80 80 All diagnoses and all reasons All diagnoses and all reasons for revision included. for revision included. 75 75 Male, 18y = 92.1% (90.8-93.5), n = 22,737 Male, 19y = 62.6% (58.3-67.0), n = 5,610 Female, 19y = 94.8% (93.9-95.6), n = 47,360Female, 19y = 60.2% (56.2-64.1), n = 5,652 70 70 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 8 8 9 0

The New Orthopaedics Patient Weight

 The mean BMI is steadily increasing in the Western population

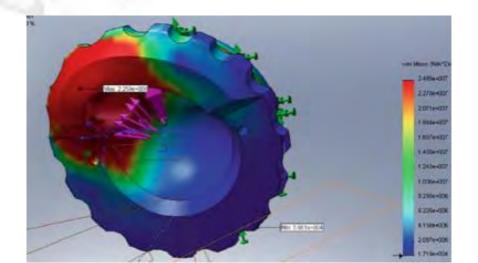

The New Orthopaedics Patient Activity

- As the mean age of the patients is steadily decreasing
- the mean activity level of the patients is increasing.

Modes of poly wear in THA reduced by cross-linking

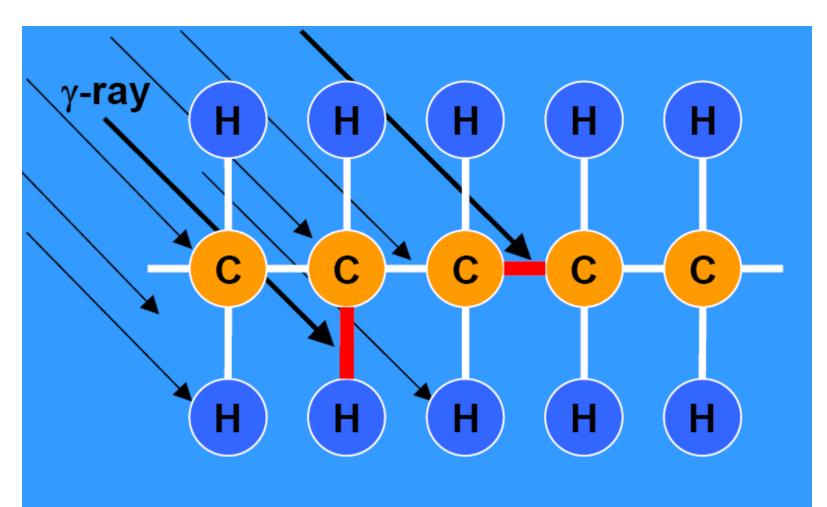
Hips

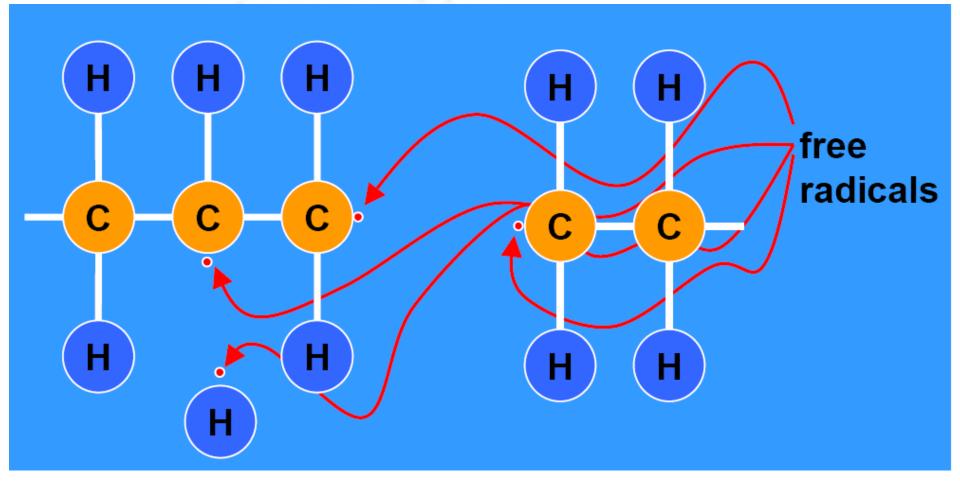
- Highly conforming
- Dominated by abrasion/adhesion

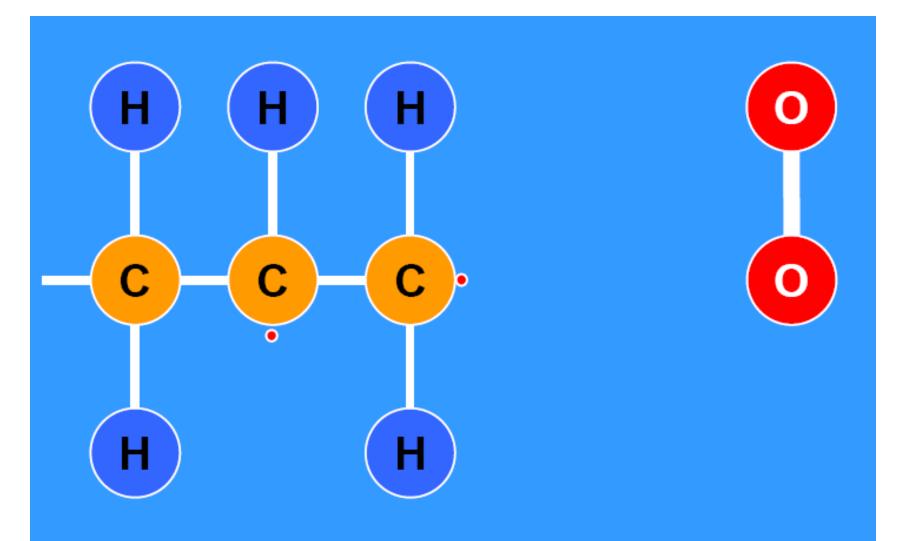


Other sources of debris

8


- Modular junctions
- Impingement
- Instability
- Edge loading

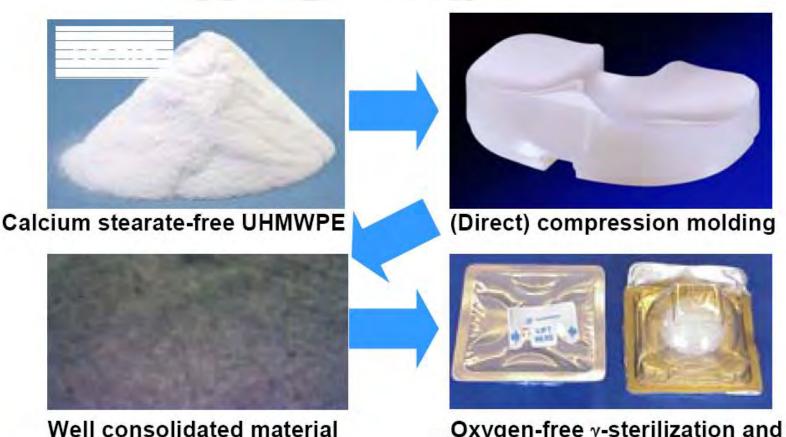

sterilization by gamma radiation in air (2.5 - 4.0 Mrad)


sterilization by gamma radiation in air (2.5 - 4.0 Mrad)

sterilization by gamma radiation in air (oxidative degradation)

sterilization by gamma radiation in air (oxidative degradation)

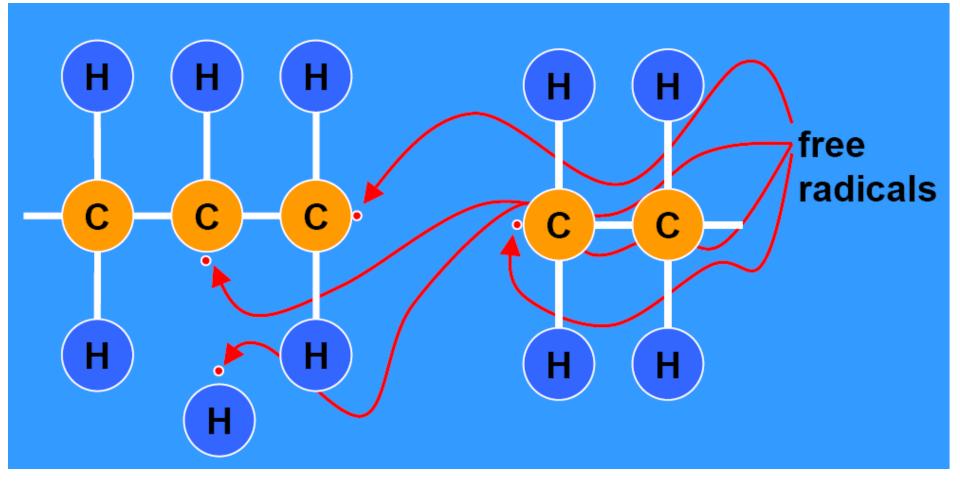
High wear rate н **Delamination Gross fracture** 0 Н 10 mm С С • 0 Н



HXLPE (1998) highly cross-linked polyethylene

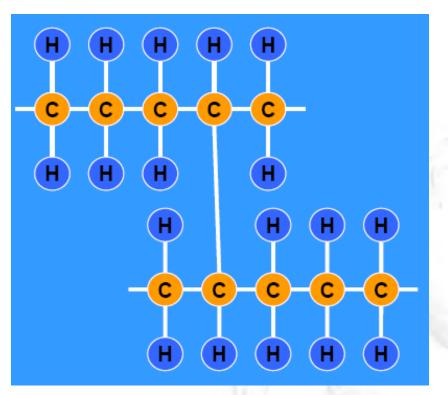
radiation in inert atmosphere

(5 – 10 Mrad gamma or electron beem)



Oxygen-free γ -sterilization and packaging

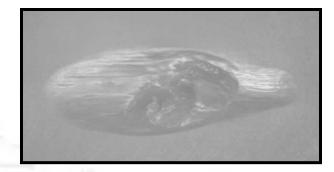
HXLPE

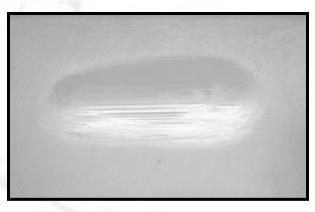


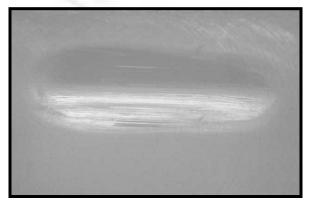
HXLPE

Wear Reduction

Liner wear rate lesser than **0.1mm∖yr** → Very low risk of osteolysis-loosening

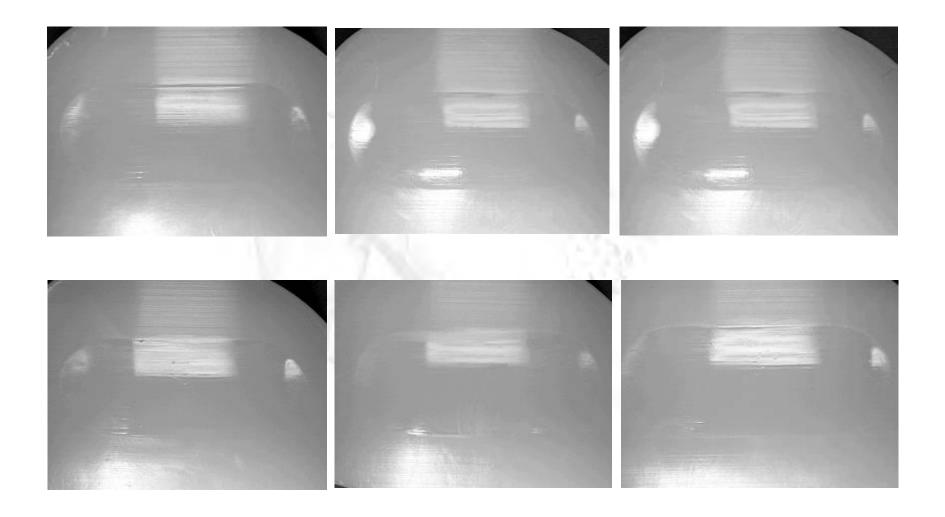

Fisher J: tribology in total hip arthoplasy, K. Knahar (Ed) 3-9; EFORT 2011


Wear Damage

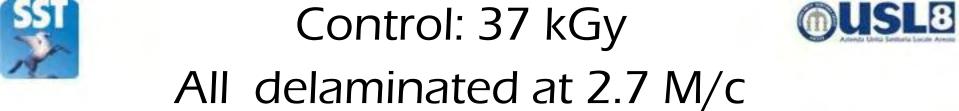

Control pitting, cracking

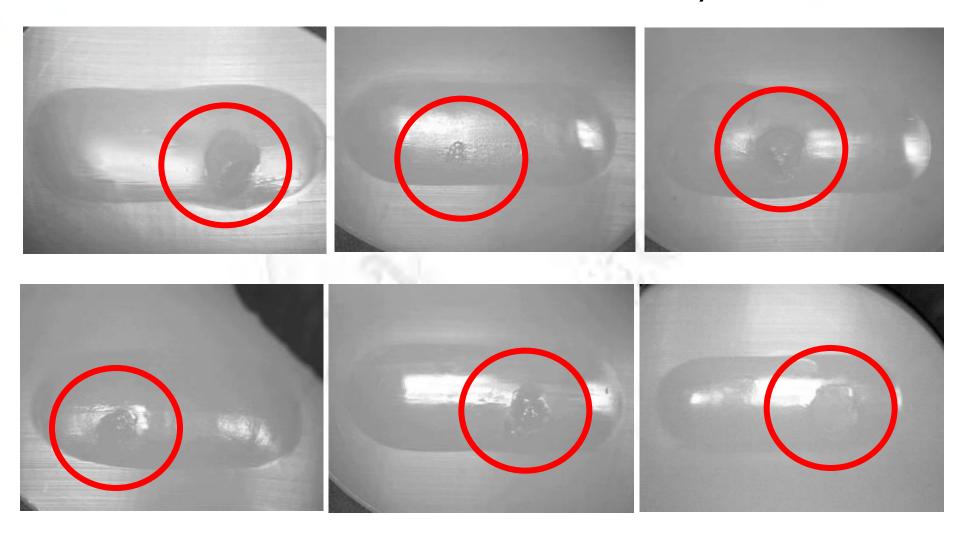
65 kGy burnishing only

120 kGy burnishing only



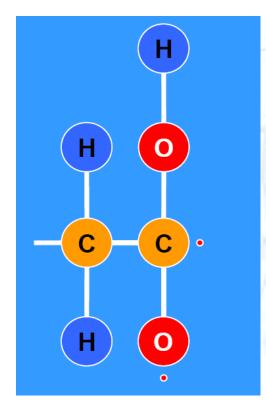
Kurtz SM: The UHMWPE Handbook. New York, Academic Press, 2004





HXLPE: 72 kGy No delamination at 8 M/c

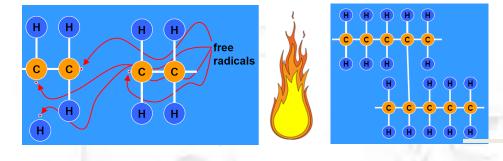
Kurtz SM: The UHMWPE Handbook. New York, Academic Press, 2004



Kurtz SM: The UHMWPE Handbook. New York, Academic Press, 2004

HXLPE oxidation

- Decreasing of mechanical properties
- Decreasing of wear resistence



HXLPE Remelting or Annealing

Reduction of Free Radicals

% crystal % amorphous

%Crystal ± Amorphous%

- Strenght
- Plasticity
- Hardness

HXLPE features

Radiation type Radiation dose Thermal stabilization Machining Terminal sterilization

Evolution of Polyethylenes for TJA OUSL8

Technology	Name	Introduction year
Firts Gen Highly cross-linked	GUR 402/405 Sulene Hylamer Duration	1985-1996
Second Gen Highly cross-linked (annealed)	Crossfire	1998
Second Gen Highly cross-linked (re-melted)	Durasul Reflection Longevity Marathon	1999-2001
Third Gen Sequentially Highly cross-linked (annealed)	X3	2005
Third Gen Vitamin E doped Highly cross- linked (annealed)	E1	2007

Streicher R M: tribology in total hip arthoplasy, K. Knahar (Ed) 61-70; EFORT 2011

TABLE 1. Cross-linked Materials Tested

Manufacturer	Resin	Fabrication	Radiation Source	Dose to Cross-link	Anneal
Biomet ArCom®	1900H	Direct compression molded or machined from molded bar	Gamma	2.5–4 Mrad	None
DePuy/Johnson & Johnson Marathon™	1050	Machined from extruded bar	Gamma	5 Mrad	Above-melt temperature (150°C)
Smith & Nephew Reflection™ XLPE	1050	Machined	Gamma	5 Mrad	At-melt temperature (136°C)
Stryker Howmedica Osteonics Crossfire™	1050	Machined	Gamma	7.5 Mrad*	Below-melt temperature (>120°C)
Sulzer Orthopaedics Durasul™	1050	Machined from compression molded sheet	Electron beam	9.5 Mrad	Above-room temperature preheating before electron beam; melt anneal; controlled heat and cool rates; warm irradiation with adiabatic melting
Zimmer Longevity™	1050	Compression molded and machined	Electron beam	10 Mrad	Above-room temperature preheating before electron beam; process between cold irradiation with subsequent melting and warm irradiation with adiabatic melting

Clinical Studies: XLPE vs Conventional PE

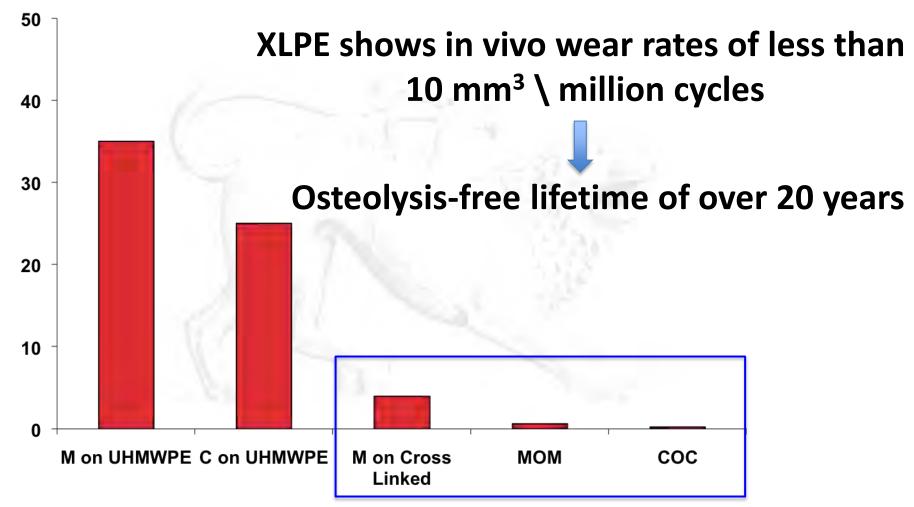
TABLE 61-2 CLINICAL DETAILS OF PRIMARY, PEER-REVIEWED STUDIES INVOLVING CROSSFIRE CROSS-LINKED POLYETHYLENE (STRYKER ORTHOPEDICS, MAHWAH, NJ)

	Martell et al (2003) ²⁹	Rohrl et al (2005) ³²	Krushell et al (2005) ³¹	D'Antonio et al (2005) ³⁰
Study type	RCT	Pcoh	Hcoh	Hcoh
Number of institutions	5	1	1	1
Cup design	Secur-Fit HA	Osteonics	Microstructured PSL	Microstructured PSL
Cup fixation	Noncemented	Cemented	Noncemented	Noncemented
Head size	28 mm	28 mm	28 mm	28 mm
Head material	CoCr L-Fit	CoCr	CoCr L-Fit	CoCr L-Fit
Average age	60	58	69	57.4
Age range	28-76	49-79	45-83	-
Number of hips	46 (24 Crossfire)	50 (10 Crossfire)	80 (40 Crossfire)	109 (56 Crossfire)
Follow-up in years	2.3	3	4	4.9
Range in follow-up	1.8-3.2	3	2.6-4.7	4-5.8
Number of device failures	None	None	None	None
Wear methodology	Martell	UmRSA	Ramakrishnan	Ramakrishnan
Two-dimensional linear penetration (mm/yr)*—cross-linked	0.12 ± 0.05	0.02	0.05 ± 0.02	0.06 ± 0.02
Two-dimensional linear penetration (mm/yr)*—control	0.20 ± 0.10	0.16	0.12 ± 0.06	0.14 ± 0.07
Percent reduction	42	85	58	72
Radiographic assessment of osteolysis	No	No	No	Yes

*The two-dimensional linear wear is listed for the longest follow-up period and includes the initial, bedding-in period.

Hcoh, Retrospective cohort study (Level III); L-Fit, low-friction ion treatment; Pcoh, prospective cohort study; RCT, randomized controlled trial (Level I).

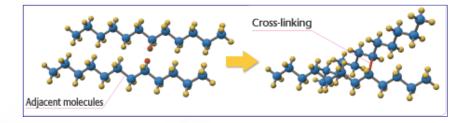
Clinical Studies: XLPE vs Conventional PE


RCT: randomized controlled trial (Level I)
 Pcoh: prospective cohort study
 Hcoh: retrospective cohort study

Better performance of XLPE:

- Two dimensional head penetration (mm/yr)
- Wear percent reduction
- Radiographic assessment of osteolysys

Volumetric wear rate (mm³/Mc)


Fisher J: tribology in total hip arthoplasy, K. Knahar (Ed) 3-9; EFORT 2011

Wang A: wear and structural fatigue simulation of HxPE for hip and knee bearing applications. ASTM STP 1445, 151(2003)

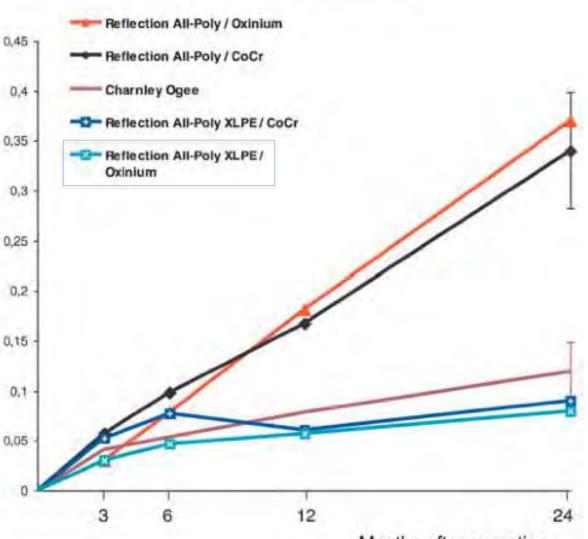
New Poly Wear

Reduction of wear rate with larger heads and thinner liners

Herrera L: hip simulator evaluation of the effect of of femoral head size on sequentially cross-linked acetabular liners. Wear 263, 1034 (2007) Galvin AL, Fisher J:wear of highly cross linked polyethylene against cobalt chrome and ceramic femoral head. Proc. Inst. Mech. Eng. H224. 1175-83 (2010)

New Poly Wear

Verilast Tchnology


Proximal penetration, mm

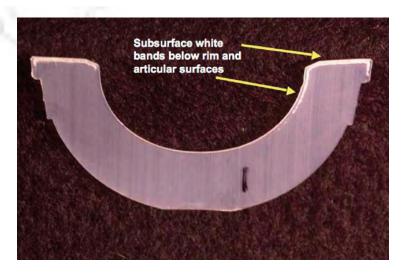
Wear and Migration o Cemented Polyethyler Heads: A Randomized

Thomas Kadar,^{1,2} Geir Hallan,¹ Arild A Terje Stokke,⁶ Kristin Haugan,³ Birgitte

Months after operation

>In vivo Oxidation

Rim Brekeage


Copyright © 2007 by The Journal of Bone and Joint Surgery, Incorporated

Evaluation of Oxidation and Fatigue Damage of Retrieved Crossfire Polyethylene Acetabular Cups

By Barbara H. Currier, MChE, John H. Currier, MS, Michael B. Mayor, MD, Kimberly A. Lyford, BA, John P. Collier, DE, and Douglas W. Van Citters, PhD

Investigation performed at the Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire

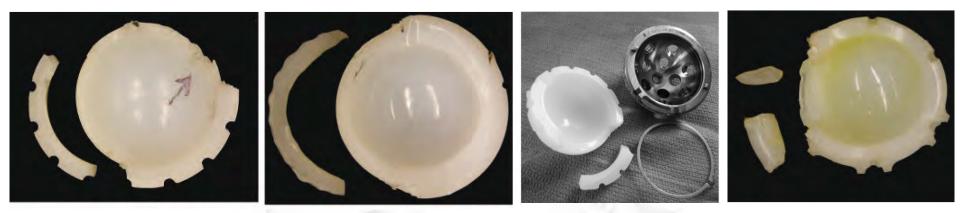
Third Generation HXLPE

Two Method of fabrication/sterilization reducing wear with limited effect on mechanical properties

Sequential Irradiation and Anneling (3x3)

Vitamin E Doping below melting temperature

Oral-Muratoglu, J Arthropl 2008


In vivo OxidationRim Brekeage

XLPE: very low wear rate but with possible mechanical failure

- XLPE is mechanically inferior to conventional PE due to reduced toughness and strenght
- XLPE behaves like ceramic in case of instability and impingement
- XLPE breaks at the unsupported rims during impingement or subluxation

Harris W: three revolutions in acetabular revision surgery. Abstract 16° ISTA: 24-28 (2003)

Ideal HXLPE liner

Thickness > 5 mm No rim elevation Monoblok 32 – 36 head diameter Vit E ?

Bearing Surface Options Survivorship

Arthroplast

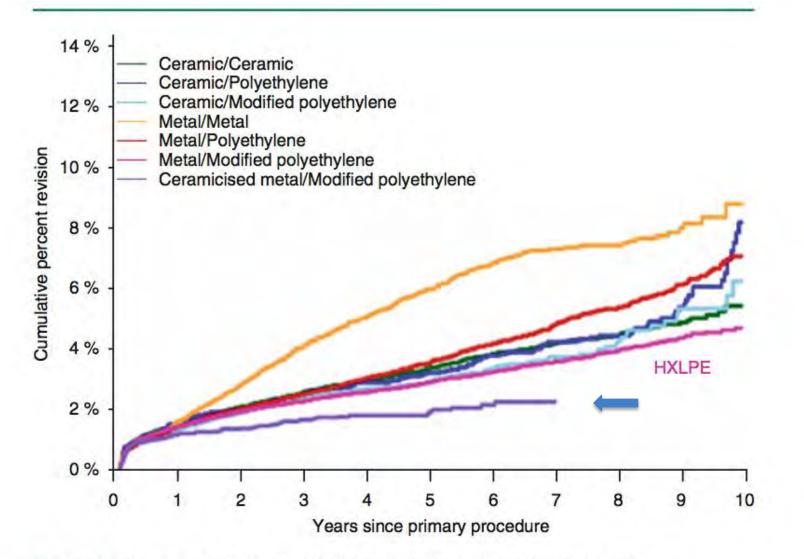


Fig. 11.6 10-year survival data for HXLPE from the Australian arthroplasty register

In Vivo Basic Wear Conditions Technique Related

- Impingment
- Edge loading
- Instability

CORRECT COMPONENTS POSITION

CONCLUSIONS

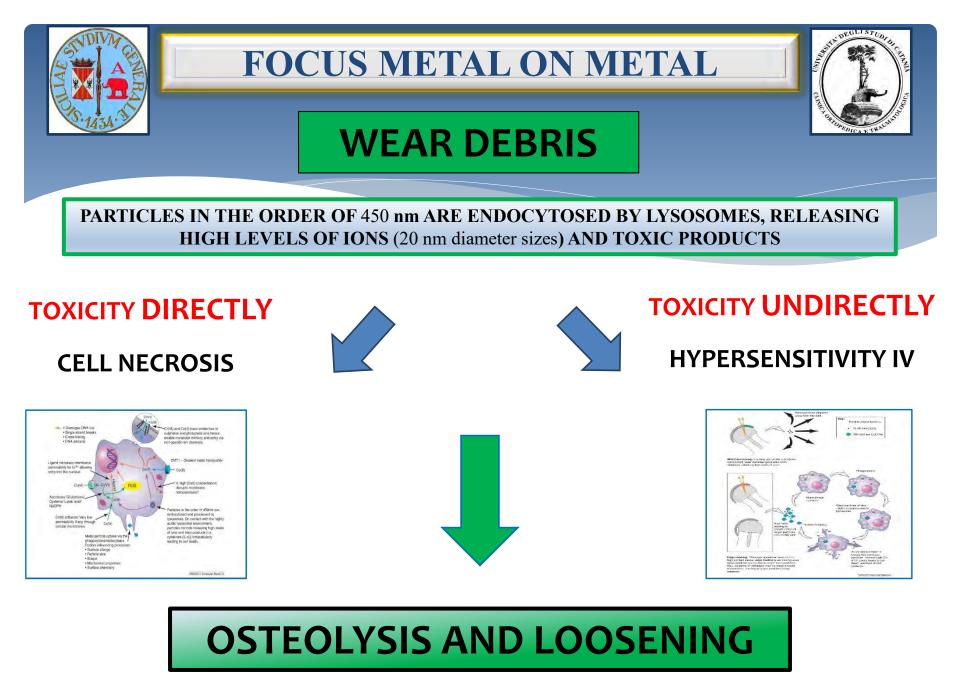
- Osteolysis has been the major cause of failure of the 20th century, but with the new bearing options it is clearly decreasing.
- ✓ Second generation HXLPE are showing good performance in vivo after one decade follow-up.
- Third generation HXLPE are promising for further better survivorships reducing oxidation and improving mechanical resistence.
- Even with excellent bearing surfaces, the surgeon's goal remains the correct components position.

UNIVERSITY OF CATANIA Orthopaedic and Traumatology Clinic CHIEF: M.D. GIUSEPPE SESSA

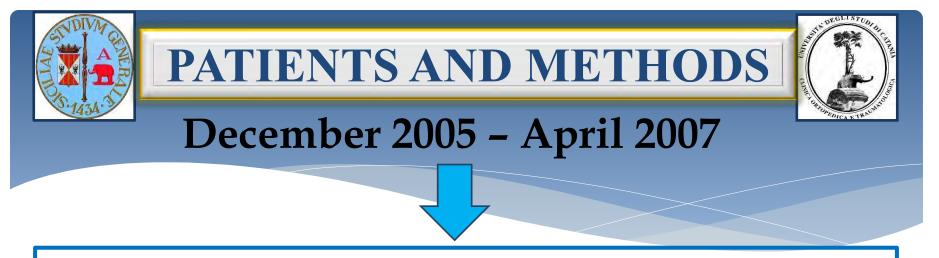
METAL ON METAL TOTAL HIP REPLACEMENT: OUR EXPERIENCE AT MID-TERM FOLLOW-UP

> <u>S. Gioitta Iachino*</u>, F.R. Evola, V. Pavone, L. Costarella, G. Sessa

FOCUS ON METAL ON METAL



 ✓ Since 1996 more than <u>one million</u> metal-on-metal articulations have been implanted worldwide


 ✓ Highest wear rates occur during first year "run in phase" (8 mm₃/y) and followed by "steady state phase" (1 mm₃/y)

M. Hasegawa et all. Cobalt and Chromium Ion Release After Large-Diameter Metal-on-Metal Total Hip Arthroplasty. The Journal of Arthroplasty Vol. 27 No. 6 20

Chess DG, et al. Metal-on-metal versus polyethylene in hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 2013

✓ 13 PATIENTS (4 FEMALE-9 MALE) UNDERWENT THR WITH DUROM CUP

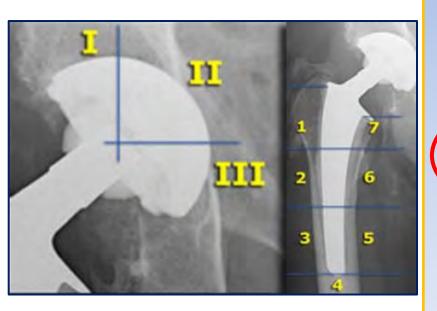
✓ AVERANGE AGE 52 YEARS OLD

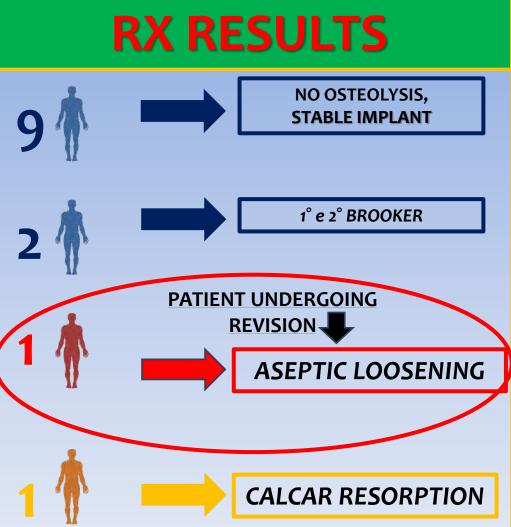
✓ ANTERO-LATERAL ACCESS (W-J MODIFIED)

✓ <u>CLINICAL AND RADIOLOGICAL YEARLY FOLLOWED</u>

DURING 2015 ALL PATIENTS WERE RECALLED FOR <u>CLINICAL</u>, <u>STRUMENTAL (RX-MRI); CR/ CO BLOOD EVALUATION</u>

MAXIMUM FOLLOW UP 10 YEARS


STRUMENTAL EVALUATION


Contraction of the second seco

ANTEROPOSTERIOR AND LATERAL RADIOGRAPHS

RADIOLOGICAL ASSESSMENT WAS PERFORMING WITH CHARNLEY DE LEE (Modified by Beaulè-

2004) AND GRUEN SCORE

3 YEARS POST REVISION

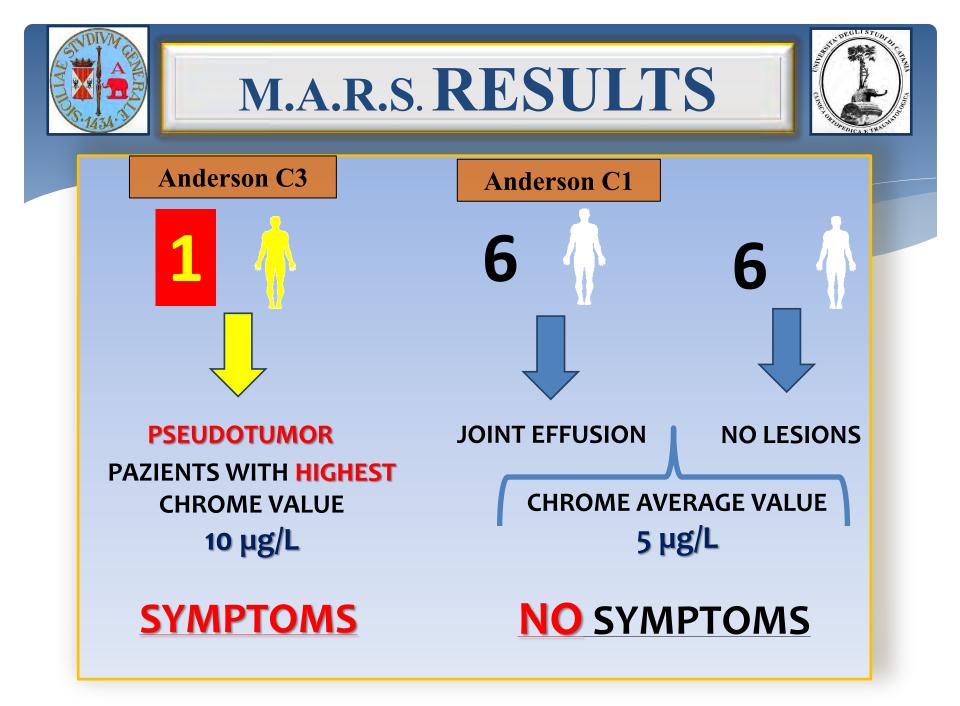
10

HISTOPATHOLGY :

FIBROUS CAPSULAR WALL, PERIVA\$CULAR LYMPHOCYTIC INFILTRATION

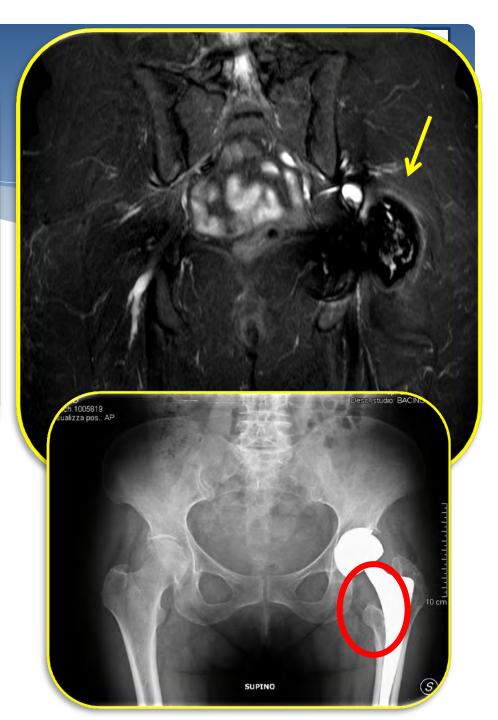
RESULTS

statistical analyses



Inductively coupled plasma mass spectrometry

	n.	PATIENTS	n.	CONTROLS	p value	
		(Dev. Stand.)		(Dev. Stand.)		
Blood Nickel	13	3,09 (3,80)	11	3,62 (3,14)	n.s.	0,5 - 4,0
Blood Cobalt	13	4,36 (5,46)	11	0,28 (0,11)	<0,001	0,1 - 1
Blood Molibdeno	13	1,11 (0,46)	11	0,79 (0,21)	n.s.	-
Blood Chrome	13	5,19 (2,91)	11	1,45 (0,68)	<0,001	0,1 - 1
Blood Titanium	13	10,57 (4,89)	11	0,91 (1,36)	<0,001	-
Urine Nickel	13	4,97 (5,74)	6	3,00 (2,51)	n.s.	0,1 - 4,0
Urine Molibdeno	13	61,91 (43,52)	6	27,03 (22,10)	<0,001	11,1 - 156
Urine Cobalt	13	6,83 (5,36)	6	0,35 (0,27)	<0,001	0,2 - 2
Urine Chrome	13	4.01 (3.77)	6	0,65 (0,25)	<0,001	n.d 2
Urine Titanium	13	0,79 (0,49)	6	0,43 (0,18)	n.s.	- A.
	4					


WILCOXON-MANN-WHITNEY STATISTIC TEST SHOWS HIGHLY SIGNIFICANT LEVEL

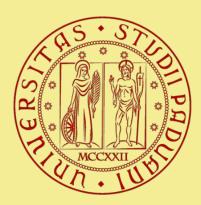
	Grade Description	n Criteria
Metal	Arti ci Mila	Less than 5 cm maximal diameter
DWHATISN et all 2		of techniques used for
STAGING SYSTEM		netal artifacts at MRI =
STAGING SYSTEM	reducing m	attenuation
STAGING SYSTEM	 reducing m ✓ STIR for fat suppre performs better in 	•
STAGING SYSTEM	 reducing m ✓ STIR for fat suppresentation ✓ STIR for fat suppresentation ✓ spin echo instead of ✓ shorter echo space 	attenuation ession (spectral fat suppression a homogeneous field) of gradient echo where possible ing
	 reducing m ✓ STIR for fat suppresentation ✓ STIR for fat suppresentation ✓ spin echo instead of 	attenuation ession (spectral fat suppression a homogeneous field) of gradient echo where possible ing shift Extension through deep fascia Tendon avulsion
WHICH	 reducing m ✓ STIR for fat suppreprint performs better in performs better in spin echo instead of shorter echo space ✓ shorter echo space ✓ smaller water-fat set thinner slices ✓ maintain good SNI 	attenuation ession (spectral fat suppression a homogeneous field) of gradient echo where possible ing shift Extension through deep fascia Tendon avulsion

PSEUDOTUMOR

Female, 61 years old ANDERSON C3 CHROME 10 µL COBALT 9 µL No systemic deseases

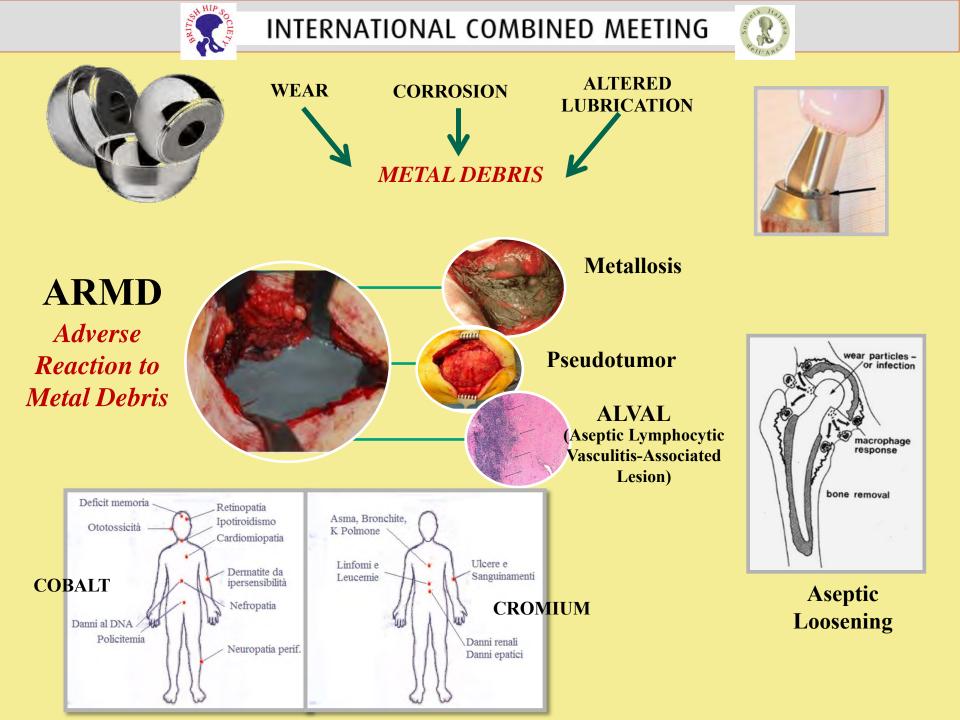
CONCLUSIONS

Good results at mid term with Durom cup (wide ROM and stable implant, our metal ions values <u>5,5 µg/l</u> agreement with literature)


Necessary strictly follow up: metal ions detection, mri mars, ultrasound.

> 5-7 μ g/l is already attention threshold

Clinica Ortopedica Università di Padova Direttore Prof. P. Ruggieri


Metallosis in total hip arthoplasty: an experimental comparative study in three different bearings

A. Zaia – L. Todros – A. Pozzuoli – A. Berizzi – R. Marin – C. Iacobellis

INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA

OBJECTIVES

- Compare Cr-Co ion levels and ARMD incidence in 3 groups of THA
- Best prosthetic implant with regards to risk-benefit ratio
- Effectiveness of monitoring protocol
- Identify any risk factors associated to high levels of metal ions
- Correlation among [Cr]-[Co] and mechanical and bio-chimical parameters
- Influence of renal function in Cr-U e Co-U values

INCLUSION CRITERIA:

- ✓ THA MoM-CoC-TriboFit
- ✓ Written Consent
- ✓ Prolongued follow up

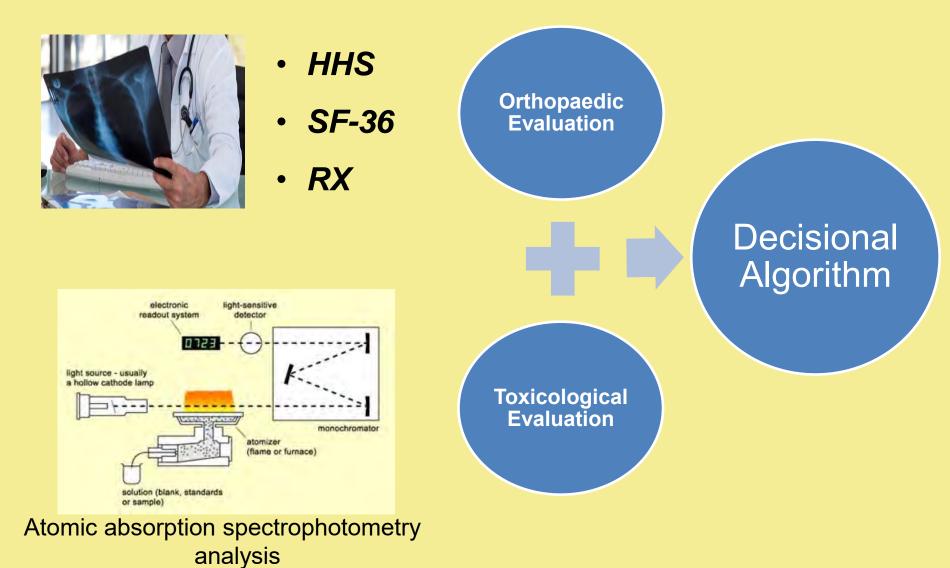
EXCLUSION CRITERIA:

- Professional exposure to metal ions
- Renal and immunological disease
- Severe disability

- 52 THA MoM
 - Controls: at recruitment, 6, 12 and 24 months
- 25 THA metal polycarbonate-urethane (TriboFit[©])
 - Controls: at recruitment, 6, 12 and 24 months
- 50 THA CoC
 - Controls: at recruitment and at 24 months

	N°	Age	Gender		Diagnosis			Side		
			М	F	Fracture	Arthrosis	Other	R	L	R+L
МоМ	52	65,2	18 (35%)	34 (65%)	28 (54%)	21 (40%)	3 (6%)	23 (44%)	24 (46%)	5 (10%)
Tribofit[©]	25	78,9	5 (20%)	20 (80%)	25 (100%)	/	1	13 (52%)	12 (48%)	/
CoC	50	67,7	20 (38%)	28 (58%)	30 (60%)	20 (40%)	1	20 (40%)	25 (50%)	5 (10%)

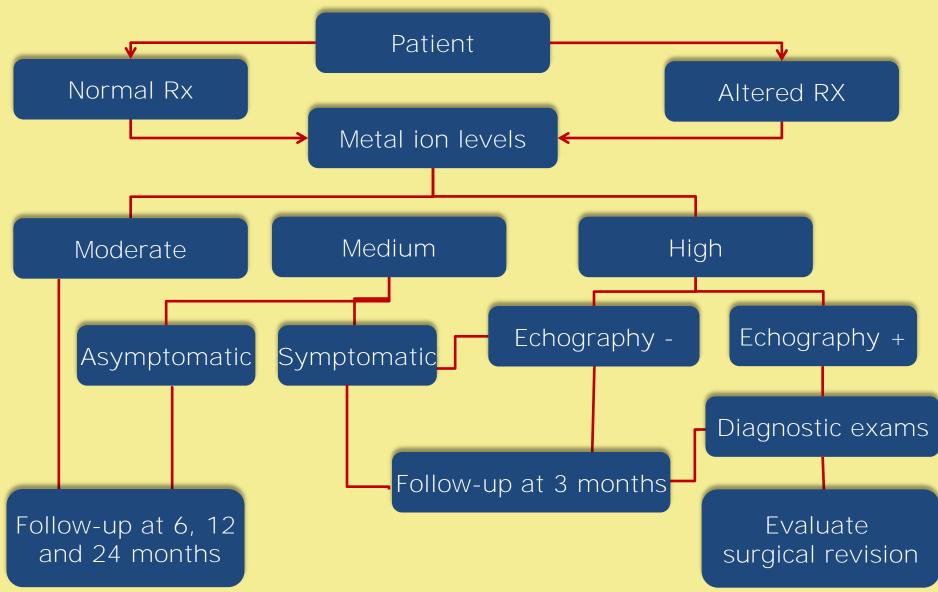
	N°	Age	Gender		Diagnosis			Side		
			М	F	Fracture	Arthrosis	Other	R	L	R+L
МоМ	52	65,2	18 (35%)	34 (65%)	28 (54%)	21 (40%)	3 (6%)	23 (44%)	24 (46%)	5 (10%)
Tribofit©	25	78,9	5 (20%)	20 (80%)	25 (100%)	/	/	13 (52%)	12 (48%)	/
CoC	50	67,7	20 (38%)	28 (58%)	30 (60%)	20 (40%)	/	20 (40%)	25 (50%)	5 (10%)


	N°	Age	Gender		Diagnosis			Side		
			М	F	Fracture	Arthrosis	Other	R	L	R+L
МоМ	52	65,2	18 (35%)	34 (65%)	28 (54%)	21 (40%)	3 (6%)	23 (44%)	24 (46%)	5 (10%)
Tribofit ©	25	78,9	5 (20%)	20 (80%)	25 (100%)	/	/	13 (52%)	12 (48%)	/
CoC	50	67,7	20 (38%)	28 (58%)	30 (60%)	20 (40%)	/	20 (40%)	25 (50%)	5 (10%)

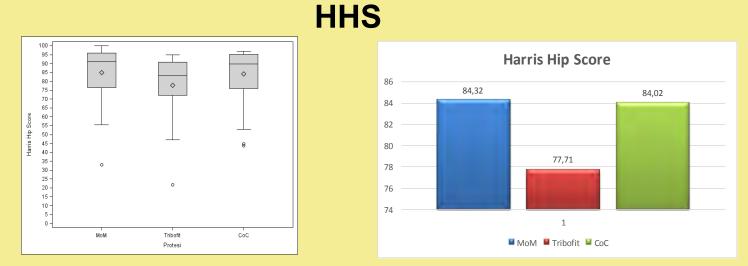
INTERNATIONAL COMBINED MEETING

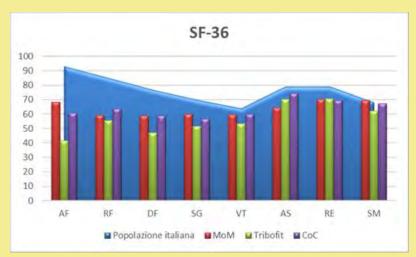
PATIENTS EVALUATION

TOXICOLOGICAL EVALUATION


	SIVR, 2012 (µg/L)	(Italian society of reference values)
Со В	0.05 – 1	
Cr B	0,1 - 0,50	Normal population
Co U	0,1 - 1,50	
Cr U	0,05 – 0,35	

	CoB (µg/L)	CrB (µg/L)	CoU (µg/L)	CrU (µg/L)
Moderate	1 - 10	0,5 - 5	1,5 - 15	0,35 – 3,5
Medium	> 10	> 5	> 15	> 3,5
High	> 100	> 50	> 150	> 35


DECISIONAL ALGORITHM



RESULTS



SF-36

p=0,019

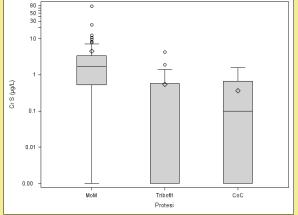
٥

0

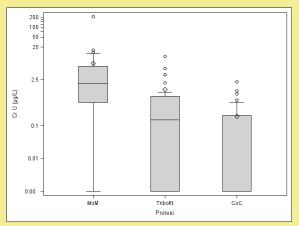
500 :

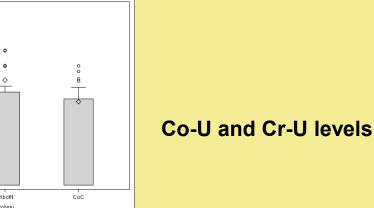
300 =

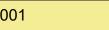
150 -


50

0.01


0.00


Co U (µg/L) 0.2 - 0



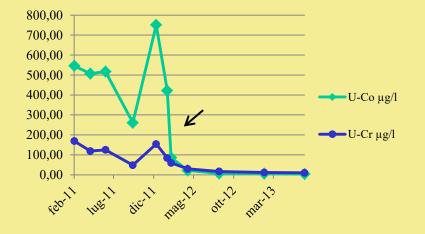
p<0,0001

p<0,0001

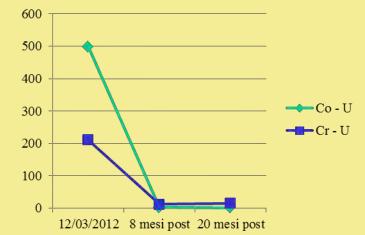
p<0,0001

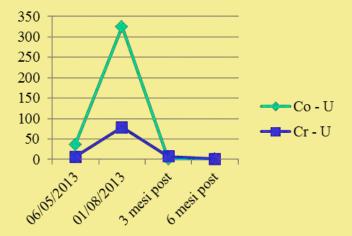
AVERAGE	МоМ	Tribofit	CoC	MEDIAN	МоМ	Tribofit	CoC
CoB (µg/L)	7,45	1,90	1,00	CoB (µg/L)	1,58	1,35	0,79
CoU (µg/L)	16,93	2,21	0,45	CoU (µg/L)	2,82	0,10	0
CrB (µg/L)	4,45	0,54	0,36	CrB (µg/L)	1,69	0	0,10
CrU (µg/L)	7,95	1,27	0,19	CrU (µg/L)	1,96	0,15	0

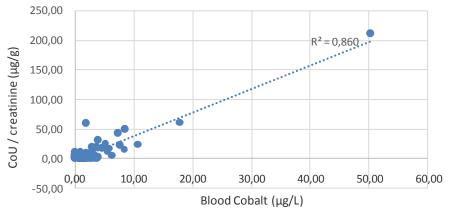
	% of patients who exceeded SIVR values (at least 1 value in 1 contol)					
%	МоМ	Tribofit	CoC			
MODERATE	72%	39%	26%			
MEDIUM	39%	14%	0			
HIGH	6%	0	0			

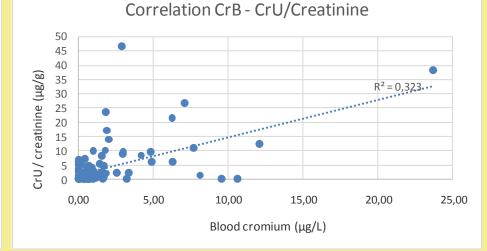


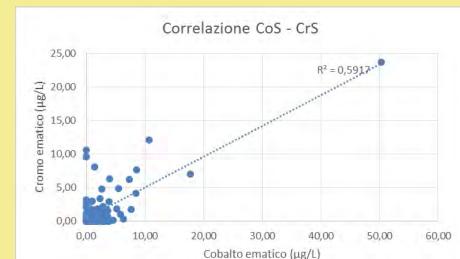
HIGH RELEASE	Average and				
(6%)	Standard deviation				
CoB (µg/L)	134,77 <u>+</u> 78,69				
CoU (µg/L)	42,80 <u>+</u> 30,94				
CrB (µg/L)	428,73 <u>+</u> 362,54				
CrU (µg/L)	123,83 <u>+</u> 105,53				







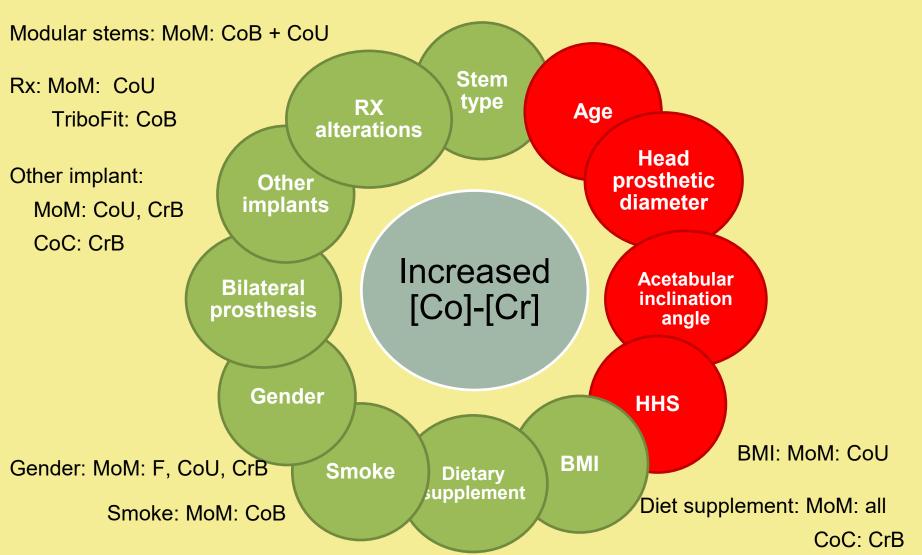




CORRELATION BETWEEN BLOOD AND URINE ION METAL CREATININE CORRECTED

Correlation CoB - CoU/Creatinine

Correction of urinary ions levels with creatinine improved the correlation with the blood ones.


The increase of ion blood level is always followed by an equivalent rise in urine level.The correlation between CoB and CrB highlights the simultaneous release of both ionic forms

RESULTS

CORRELATION BETWEEN MECHANICAL/BIO-CLINICAL PARAMETERS AND METAL IONS LEVELS

CONCLUSIONS

- The decisional algorithm used during the follow up has proved effective, identifying at early stage patients with ARMD in the MoM group.
- The levels of Co and Cr ions released from MoM implants were significantly higher than the two other groups, but we haven't identified any clear correlation between mechanical and bio-clinical parameters and the increased risk of ARMD
- The measurement uf urinary Cr and Co ions were also more related to the relative blood levels when corrected by creatinine
- The end of the two-years follow up of all patients recruited and the extension of the monitoring protocol will be useful for a better interpretation of these preliminary data.

CONCLUSIONS

MoM implant show a disadvantageous risk-benefit ratio due to ions release and high revision rate.

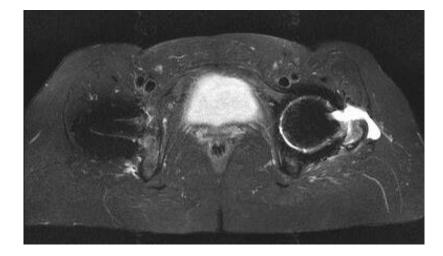
TriboFit[©] implants performed poorly from a mechanical and functional point of view

CoC implant is indicated as a primary choice for THA

THANK YOU

Trunnionosis in Metal on Polyethylene Uncemented Accolade-Trident Total Hip Replacements

Gee C, <u>Poole W</u>, Wilson D, Gibbs J, Stott P


Brighton and Sussex University Hospitals NHS Trust

Adverse Reaction to Metal Debris (ARMD)

- Well recognized in large head metal on metal THRs
- Less well documented in metal on polyethylene THRs
- Present 3 cases (one bilateral) of trunnionosis in the Accolade Trident (*Stryker, Newbury, UK*) metal on polyethylene THR.
- In all cases the Accolade stem used was titanium based alloy uncemented stem, with V40 taper, and 36mm Co-Cr head

Case 1

Age of patient	66 years
Time to revision	4 months
Inflammatory markers	WCC 3.5 CRP 1.1
Metal ions (<i>nmol/L</i>)	Co 10.3 Cr 13.3
Microbiology	Negative
Histology	Non specific chronic inflammatory response
Intra-operative	Large amount of cloudy fluid in joint, excessive trunnion wear

Case 2

Age of patient	65 years
Time of revision	L: 30 months R: 36 months
Inflammatory markers	WCC 5.4 CRP 2
Metal ions (<i>nmol/L</i>)	Co 161 Cr 12.1
Microbiology	Negative in both revisions
Histology	Not performed
Intra-operative	Black metal stained fluid in hip joint

Case 3

Age of patient	67 years
Time to revision	60 months
Inflammatory markers	Co 97 Cr 19.6
Metal Ions (<i>nmol/L</i>)	Co 97 Cr 19.6
Microbiology	Negative
Histology	Granulomatous reaction with lymphoid aggregates
Intra-operative	Large metal stained fluid collection, necrotic prox. femur with no attachments

Cases continued

• Represent a spectrum of the disease

- Fretting corrosion mechanical forces
- Galvanic corrosion metal mismatch
- ?Crevice corrosion 'female roughness'
- Head size

Conclusion

- Rare 2 cases from our unit, implanting approx. 250 Accolades annually 2012, 2013
- Complex interaction of fretting, corrosive and galvanic corrosion + diameter of femoral head
- Clinically significant corrosion from head neck junction possible
- More work needed to identify those at risk and extent of the problem

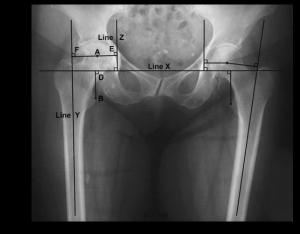
Take Home Message

- Patients with painful Metal on poly THRs
 - investigation
 - XR, ion levels, MRI

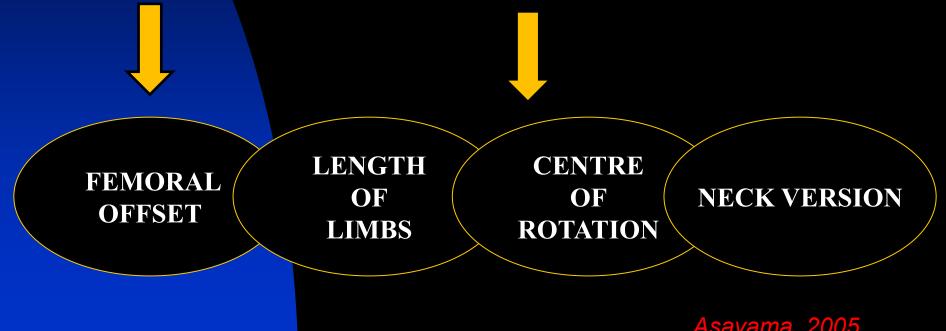
Thank you

Stem-neck modular total hip arthroplasty: possible mechanical effects!

P. Antinolfi¹, M. Chillemi², G. Placella², A. Caraffa¹, G. Cerulli²



¹Orthopedic and Ttraumatology departement Perugia University Hospital, Perugia, Italy


²Orthopaedics and Traumatology Institute Catholic University, Rome, Italy Policlinico Agostino Gemelli Università Cattolica del Sacro Cuore

Total Hip Arthroplasty

<u>One of the main objectives of</u> <u>hip prosthesis is the recovery of</u> <u>biomechanical physiological conditions</u>

Maloney and Keeney, 2004 Noble et al., 1998 Sarin et al., 2005

Asayama, 2005 Lecerf et al.,2009

Why these parameters are important?

- Reduce the imbalance abductor
- > Relief pain
- Reduce wear
- Improve R.O.M.
- > Prevent impingement
- Muscular strength
- Joint stability

Little et al 2009 Malik et al 2007 McGrory et al 1995

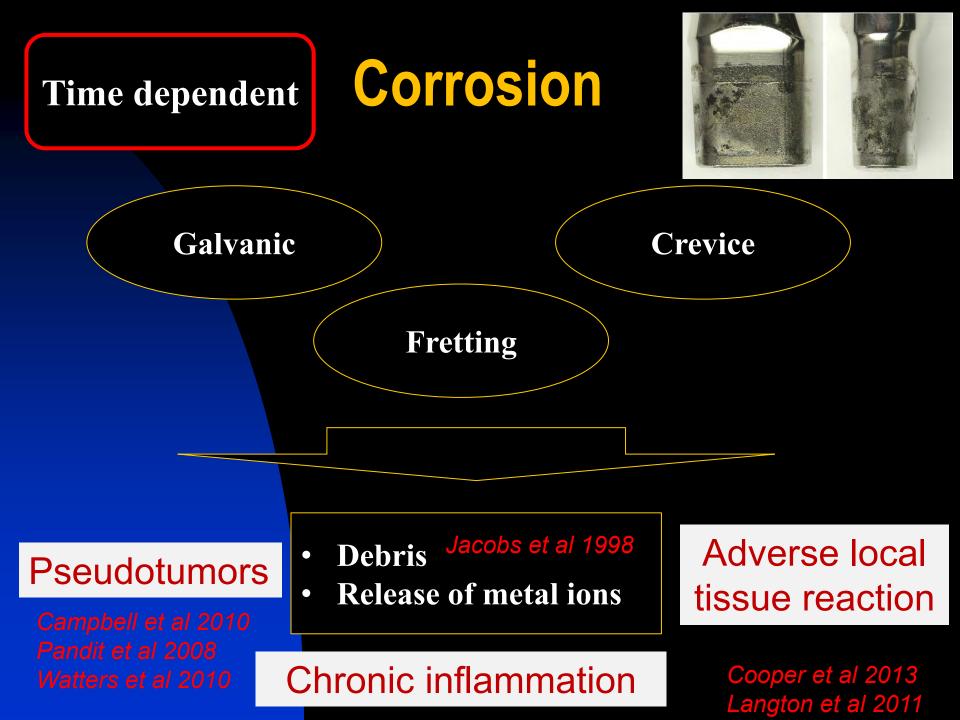

More satisfactory results for patients

MODULARITY

- Restore femoral offset
- Restore limb length
- Restore C. R.
- Femoral neck version

- Wear
- Fretting
- Corrosion
- Increased systemic exposure to metal ions and debris.

Femoral neck anteversion is important to restore the range of motion, especially for hip flexion, in post operative period. Srinivasan et al, 2012 Skendzel et al, 2011

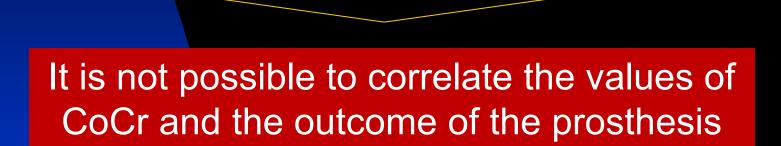

Axial and bending forces

The corrosion at the femoral – neck junction is greater than the head – neck junction for the highest mechanical stress and for an increase of the lever arm Kretzer et al 2009

Krishnan et al 2013

CrCo resistance to high loads Ti corrosion resistance

Sarmiento et al 1979



The movement of the particles of debris from the periprosthetic tissue to systemic circulation is through the active transport through the cell-mediated and passive diffusion

There seems to be no increase in the incidence of cancer after metal-polyethylene or metal – metal implant

Visuri et al 1996

- The joint replacements in CoCr are not subject to biological standards monitoring and have yet to be established acceptable levels of CoCr in blood and urine.
- To date it is not common practice to measure the serum and urine levels of CoCr in patients undergoing revision surgery

	Reference average values				
	Serum	Urine			
Cr	0,05 e 0,15 µgL ⁻¹	0,1 e 0,5 µgL ⁻¹			

Cornelis et al 1995

Threshold Values

Meftah et al 2014 Van Der Straeten et al 2014

- Cr > di 2 µg/L

Co > di 4 µg/L

Not all patients with high levels of metal ions were symptomatic

Not all symptomatic patients had high levels of metal ions

Not all patients with high levels of metal ions had an adverse local tissue reaction

In June 2012 the Stryker® recalled two prostheses with modular neck in CoCr (ABG II Modular Neck and Rejuvenate)

http://www.stryker.com/enus/products/Orthopaedics/modularneckstems/index.htm

Potential fretting and corrosion at the femoral – neck stem junction

ALTR Pain Swelling

Aim of the study

Radiographic and values of chromium and cobalt in the blood and urine evaluation of patients with ABG II Modular Neck Stryker®.

The neck is made of an alloy of GADS Vitallio (Gas atomized dispersion Strengthened), an alloy of chromium and cobalt developed by Stryker®.

stem in TMZF, an alloy of titanium, molybdenum, zirconium and iron

Materials and Methods

Study Type: Case Series, Level 4 of Evidence *Participants:* All patients admitted to the Hospital "Santa Maria della Misericordia" of Perugia, falling within the criteria for inclusion

Inclusion criteria

- Patients treated with ABG II Modular Neck Stryker® in the period from May 2011 to March 2012 without restriction for diagnosis.
- First Artroplasty.
- Polyethylene insert with metal femoral head
- No contralateral implants or other prostheses in CoCr.
- Patients undergoing controlled blood and urine.

Exclusion criteria

These criteria are related to the risk of impairment of the results of our study:

- Patients who use or have used Cr or Co for work or exposed to these metals in everyday life.
- Patients without minimum followup of one year.
- Patients with contralateral prosthesis.

there is a correlation between the three groups and the release of chromium and cobalt in the blood and urine?

Implant Design

- Head Size
- Neck Length

Patient

- Age
- Symptoms

Impant Biomechanics

3 groups

- Femoral Offset Restoration
 - Osteolysis Areas

Spearman's Significance α Interval of 0.05 Confidence 95% Femoral **Chromium serum** No VS -0,5031 < ρ -0,04895 Ellipsoid Volume of femoral head <0,4264 Head (P=0,8423) (mm³) **Cobalt Serum** No VS <u>-0.5</u>153 < p ,4128

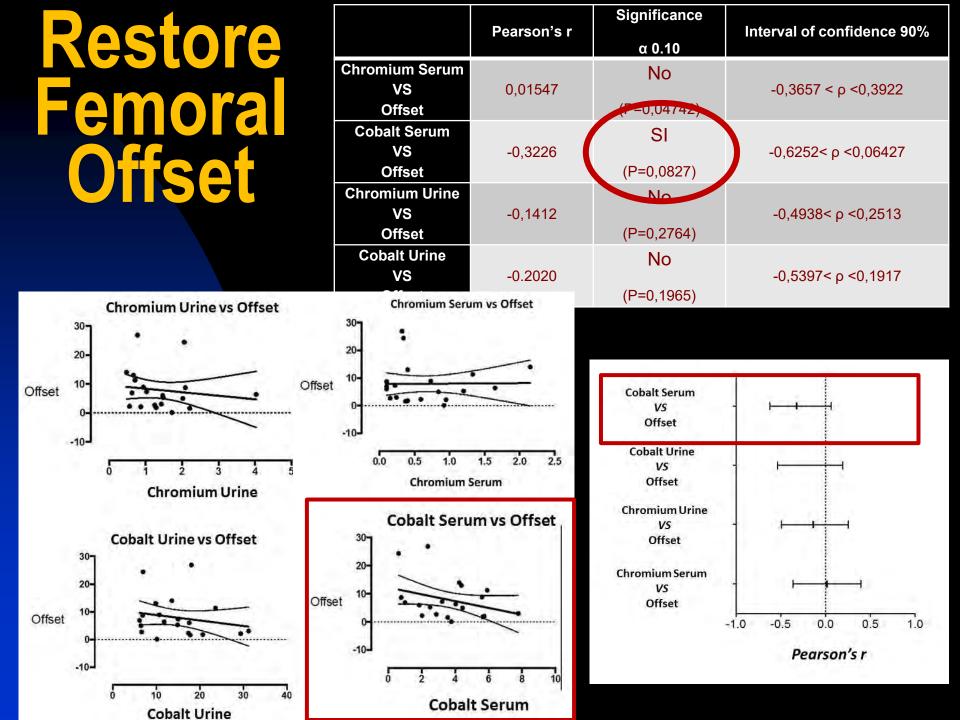
627 < ρ ,4685

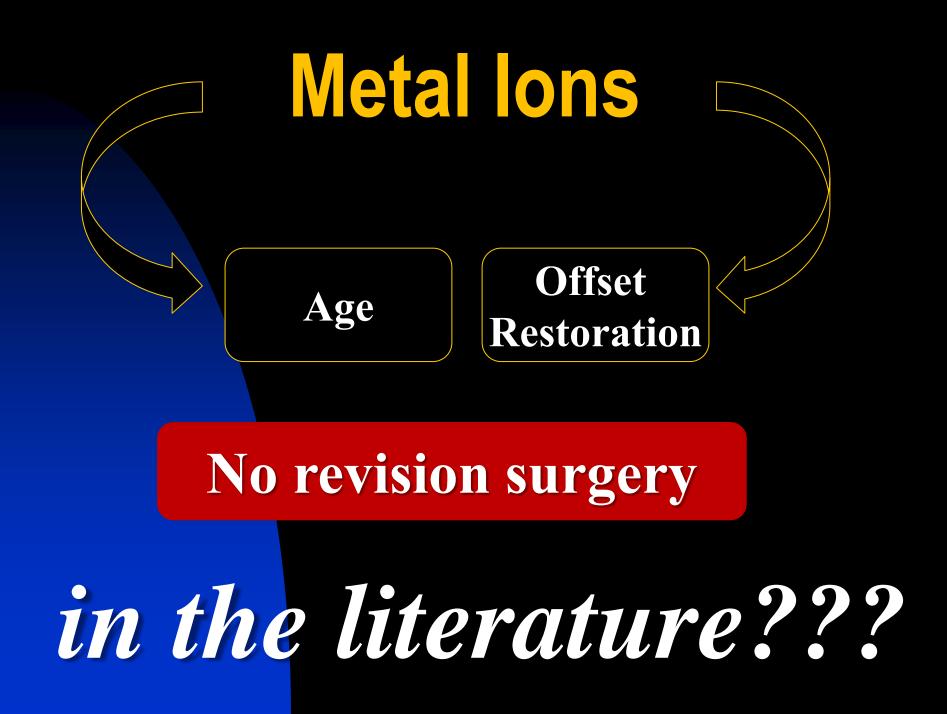
138 < ρ .5942

al of

NO CORRELATION

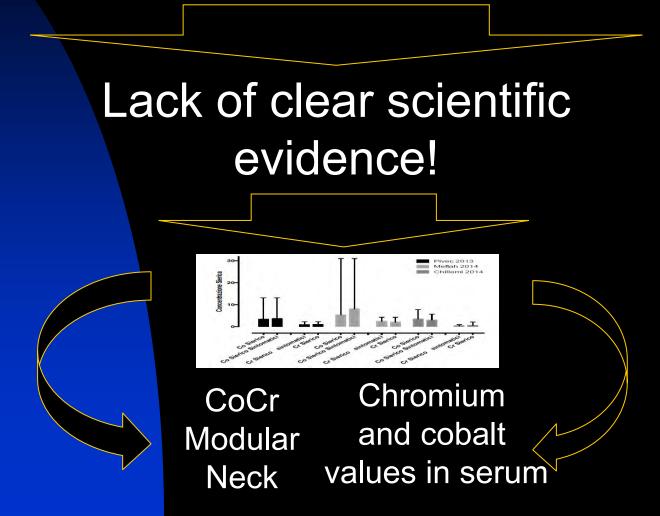
Femoral Neck


				Confidence 95%
Chromuim Serum	0,8518	(P=0,4049)	NO	-0,7459 < t <0,3144
Cobalt Serum	0,0707	(P=0,9444)	NO	-1,790 < t <1,915
Chromium Urine	0,1218	(P=0,9043)	NO	-0,5577 < t <0,4963
Cobalt Urine	0,3442	(P=0,7345)	NO	-5,999 < t <8,361


Symptomatic

		T-Student	P Value	Significance	Interval of Confidence 95%
	Chromuim Serum	0,9975	(P=0,3304)	NO	-0,8611 < t <0,3040
	Cobalt Serum	0,6069	(P=0,5507)	NO	-2,691 < t <1,478
					t i
),80
	NO C	ORR	ELAT	ION	of
					< t 8
nlvs	Cobalt S Vs Osteoly	0,9920	(P=0,7144	NO	-0,9535< t < 2,660
eas	Chrome Vs Osteoly	0,8577	(P=0,2153	NO	-0,2711 < t <0,6451

DX.


	Spearman's ρ	Significance α 0.10	Interval of Confidence 90%		
Chromium Serum VS Age	-0,3774	SI (P=0,0458)	-0,6619 < ρ <0,002		
Cobalt Serum VS Age	-0,07807	No (P=0,3683)	-0,3103< p <0,442		
Chromium Urine VS Age	-0,2173	No (P=0,1720)	-0,5511< ρ <0,1765		
Cobalt Urine VS Age	0,01366	No (P=0,4766)	-0,3675 < ρ <0,3909	Cobalt Serum VS	I
	Age			Age Cobalt Urine VS Age Chromium Urine VS Age	
(rang	56,14 je 27	- 83)		Chromium Serum VS Age -1.0	-0.5 0.0 0.5 1.0 Spearman's ρ

Systematic review of the literature

Comparison of our study with all the litterature studies that evaluated the concentration of chromium and cobalt in serum in patients with prostheses with CoCr modular neck.

Author	Pivec R Meftah M		Chillemi M
Year	2013 2014		2014
Title	Modular taper junction corrosion and failure: how to approach a recalled total hip arthroplasty implant	Early corrosion-related failure of the rejuvenate modular total hip replacement	Sierologic and radiographic mid-term outcome of total hip arthroplasty with CoCr modular neck
Journal	The Journal of Arthroplasty	J Bone Joint Surg Am	
Level of Evidence	IV	IV	IV
Design	Case series	Case series	Case series
Number of patients	171 of 202	70 of 97	22 of 53
Follow Up	minimum 24 months 2,7 years +-0,6		14- 24 months
Prosthesis models	ABG II modular neck	Rejuvenate	ABG II modular neck
% of patients lost at F.U.	15.35%	27,84%	58,49
	Principal (
Co levels	3,46 $\mu g L^{-1}$ (range 0,1 $\mu g L^{-1}$ ¹ to13,2 $\mu g L^{-1}$)	5,4 $\mu g L^{-1}$ +-5,7 (range 0,2to31 $\mu g L^{-1}$)	$3.50 \ \mu g L^{-1}$ (range 0,62 – 7,78 $\ \mu g L^{-1}$),
Cr levels	1,03 $\mu g L^{-1}$ (range 0,1to2,3 $\mu g L^{-1}$)	2,1 μ gL ⁻¹ +-1,5 (range 0,1to4,3 μ gL ⁻¹)	$0,63 \ \mu g L^{-1}$ (range $0,1 - 2,15 \ \mu g L^{-1}$),
Co levels symptomatic patients	3,67 $\mu g L^{-1}$ (range 0,1to13,2 $\mu g L^{-1}$)	8,1 μ gL ⁻¹ +-7,4 (range 0,4to 31 μ gL ⁻¹)	3,03 (range 0,62 - 5,74)
Cr levels symptomatic patients	0,98 $\mu g L^{-1}$ (range 0,1 to 2,3 $\mu g L^{-1}$)	2,5 μ gL ⁻¹ +-1,1 (range 0,2to4,3 μ gL ⁻¹)	0,42 (range 0,1 - 0,94)
Age		64+-12 (28-89 yearsi)	66,14 (range 27 - 83)
Sympomatic patients	45%	30%	22,72%
Pseudotumor		9% of revisions surgery	
Revision in Co>4 µgL ⁻¹		91,30% of revisions surgery	
Revision in Cr >2 μgL⁻¹		91,30% of revisions surgery	
Revision	15 patients 9%	23 patients. 28%	0%
Cause of revision	corrosion related symptoms	Pain	

Limits of the study

High percentage of patients lost to follow-up

- Short follow-up
- Lack of an MRI evaluation to search periprosthetic lesions
- Surgical treatment was performed by several operators
- No restrictions in the diagnosis

Conclusions

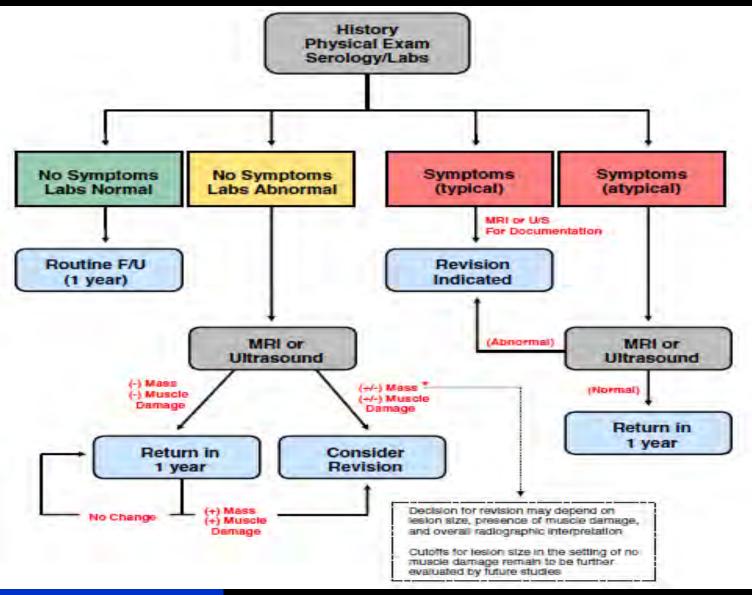
Important

Know the causes of corrosion Know the factors that influence the corrosion

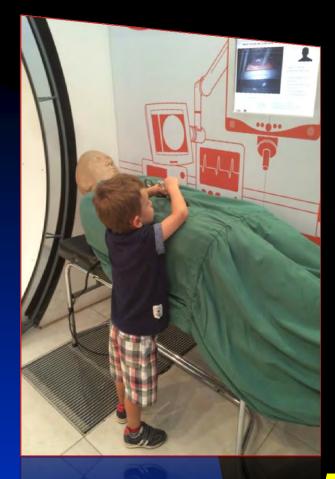
Absence in the litterature of studies that correlate the values of metal ions with the design and function of the prosthesis and the characteristics of the patient

The femoral offset and age play an important role

Conclusions



There is no evidence of malignant tumors in peri-prosthetic tissue


There is no studies with long follow-up

Is necessary to have guidelines on the treatment and management of patients

Treatment Algorithm

Pivec et al 2014

pantinolfi@gmail.com

Dr.ssa Sara Sarti

Dr. Alessandro Calistri Dr.ssa Valentina Calistri Dr. Giancarlo Giuliani Dr. Oreste Moreschini Prof. Ciro Villani

Dipartimento di Scienze dell'Apparato Locomotore

Recall ABG II Modular System: Kaplan Meyer at maximum of 6 years in a series of 151 consecutive patients: clinical results MRI study, Metal Ions and patient-oriented results.

ABG II Modular System

– Chromium, Cobalt

ADVANTAGES:

- Intra-operative accuracy
- Solution for complicated cases
- Easy for revision

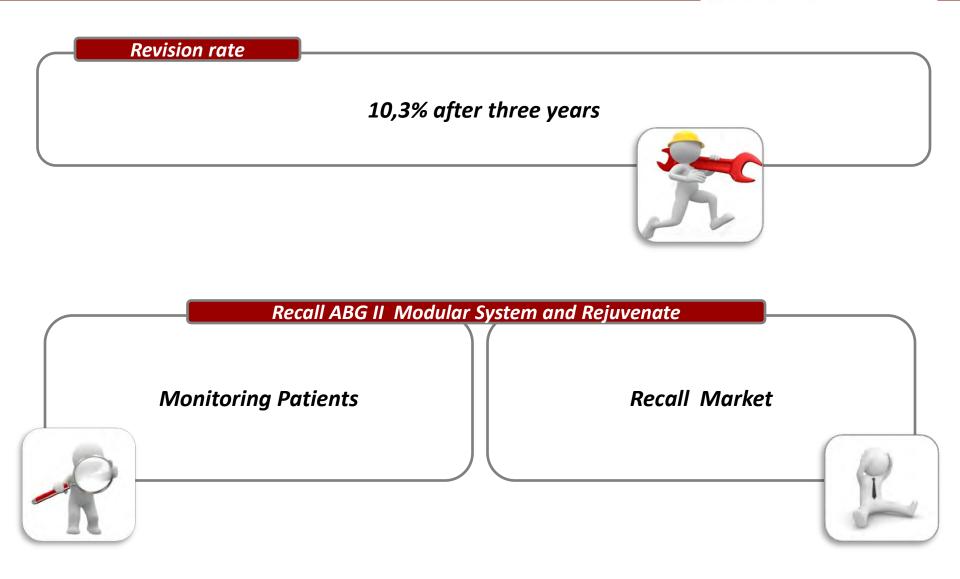
Australian Registry, 2015

Femoral Neck	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
ABGII	46	228	4.0 (2.1, 7.5)	10.2 (6.9, 15.0)	18.3 (13.4, 24.7)			
Adapter	40	374	3.8 (2.2, 6.3)	7.3 (5.1, 10.5)	10.1 (7.3, 13.8)	13.3 (9.7, 18.2)		
Apex	105	2163	2.7 (2.1, 3.5)	4.1 (3.3, 5.0)	5.1 (4.2, 6.3)	6.3 (5.1, 7.8)		
F2L	62	687	3.2 (2.1, 4.8)	5.4 (4.0, 7.4)	6.8 (5.1, 9.0)	7.6 (5.8, 9.9)	8.6 (6.7, 11.0)	
Femoral Neck (Amplitude)	14	442	0.9 (0.3, 2.4)	2.4 (1.2, 4.8)	5.4 (3.0, 9.5)			
H-Max	0	68	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
M-Cor	6	110	0.0 (0.0, 0.0)	2.8 (0.9, 8.4)	4.7 (2.0, 11.0)			
M/L Taper Kinectiv	95	2575	2.2 (1.7, 2.8)	3.4 (2.8, 4.3)	5.1 (4.1, 6.4)			
MBA	47	630	2.1 (1.2, 3.5)	4.2 (2.8, 6.1)	6.1 (4.4, 8.4)	7.1 (5.2, 9.7)	9.7 (7.2, 13.1)	
MSA	17	174	7.6 (4.5, 12.7)	9.5 (5.9, 15.0)				
Margron	76	552	5.3 (3.7, 7.5)	7.3 (5.4, 9.9)	9.4 (7.2, 12.2)	12.5 (10.0, 15.6)	14.3 (11.5, 17.6)	
Metha	11	84	10.7 (5.7, 19.6)	11.9 (6.6, 21.0)	15.6 (8.2, 28.3)			
Profemur	52	932	3.0 (2.1, 4.3)	4.7 (3.5, 6.3)	5.5 (4.2, 7.3)	6.7 (4.9, 9.0)		
R120	5	171	1.2 (0.3, 4.6)	2.6 (1.0, 6.8)	2.6 (1.0, 6.8)			
Other (5)	5	99	1.0 (0.1, 7.0)	3.3 (1.1, 10.0)	5.9 (2.5, 13.8)	5.9 (2.5, 13.8)		
TOTAL	581	9289						

 Table HT26
 Cumulative Percent Revision of Primary Total Conventional Hip Replacement using an Exchangeable Femoral Neck by Prosthesis Type (Primary Diagnosis OA)

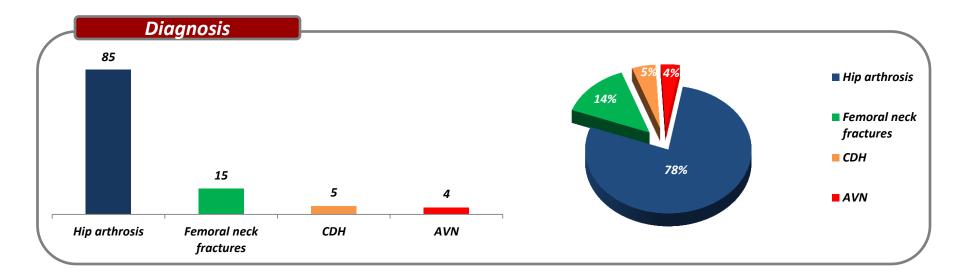
Note: Only Femoral Neck Prostheses with over 60 procedures have been listed.

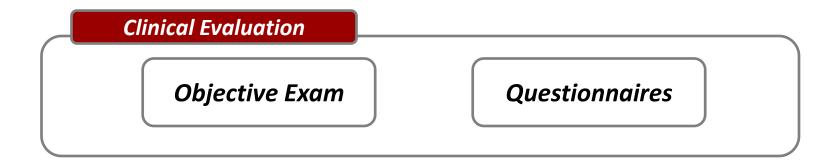
All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

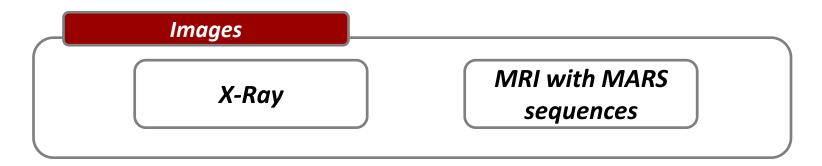

<u>Revision rate</u>: After one year: **3.9** % After three years: **10.3** % After five years: **18.3**% Hip and Knee Arthroplasty

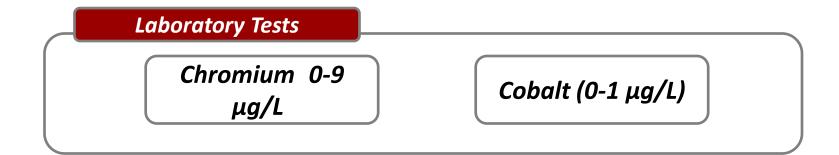
Recall ABG II Modular System

Evaluate ABG II Modular System survivorship used at Orthopaedic Clinic of Sapienza.

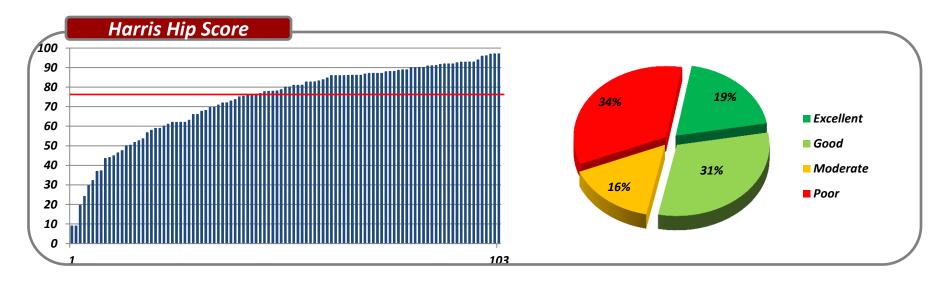

Material and methods

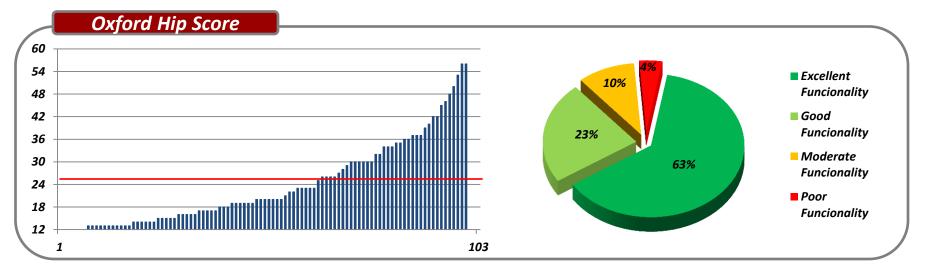

- ✓ Tot. patients called 151 (n°13 bilateral)
- ✓ Tot. Patients evalueted 100 (n°9 bilateral)
- ✓ Average age 75,2 years
- ✓ Average follow-up 5,6 years


51 pt, 55 hips lost at F-U



Material and method 2

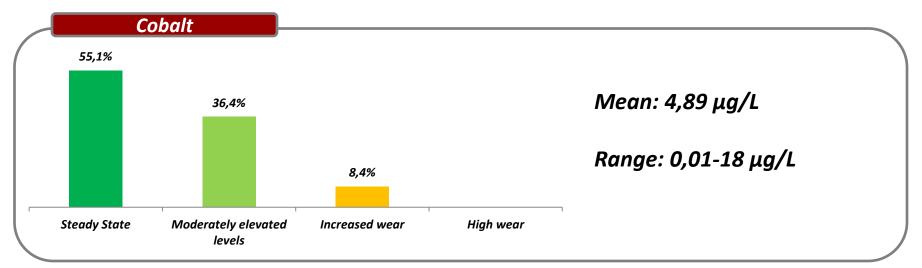




Functional results

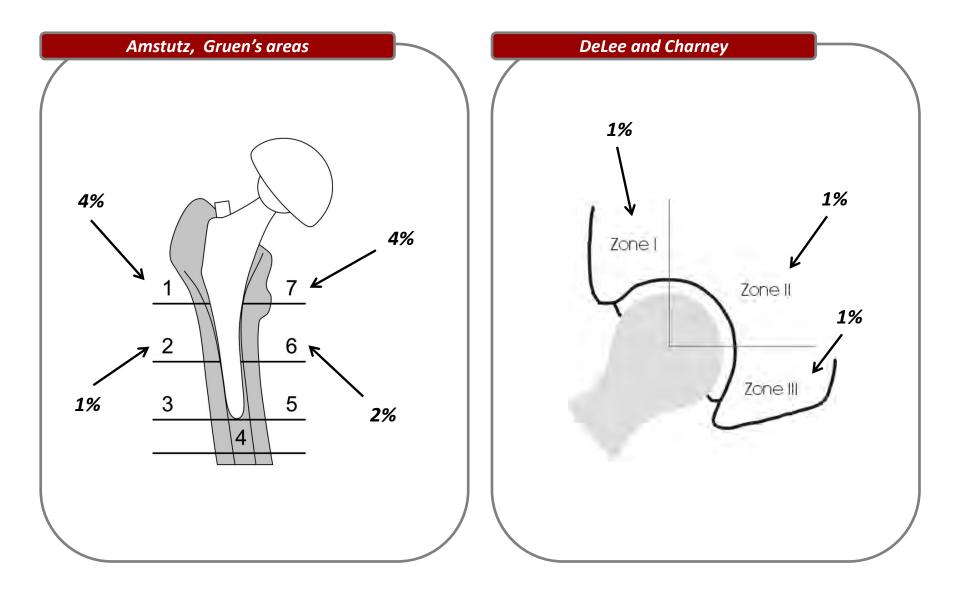
Level of Chromium and Cobalt

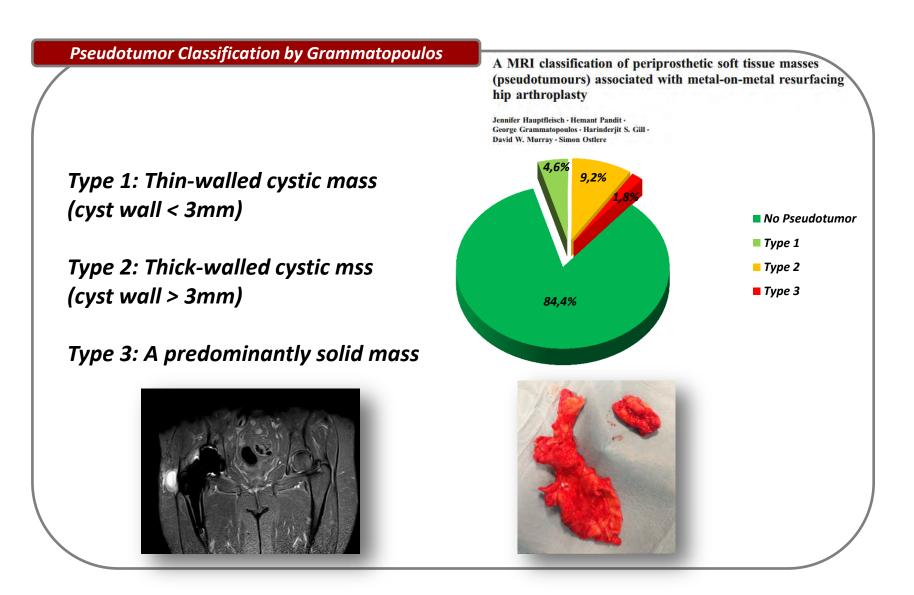
Algorithm

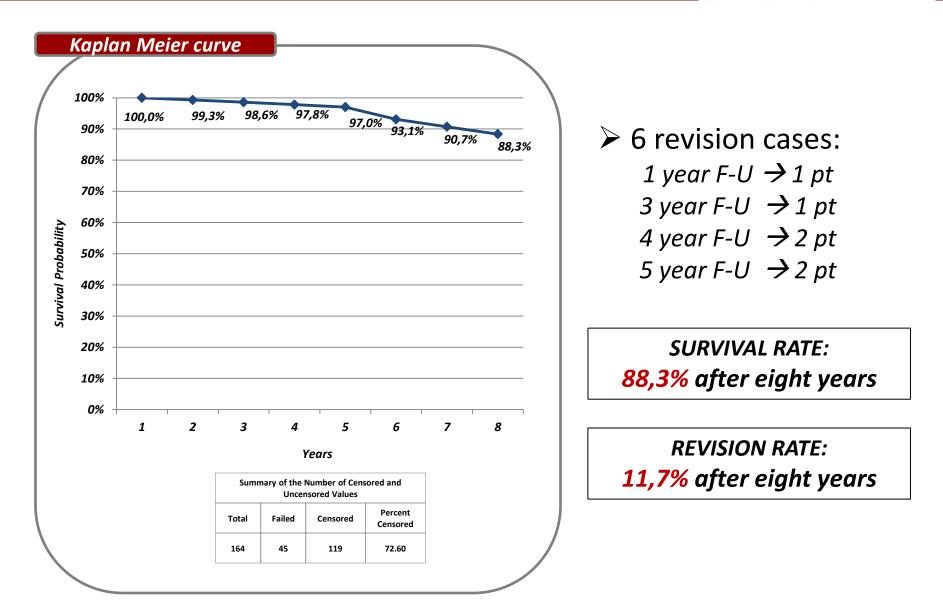

Classification of the metal ions levels (Cr and Co) for use with the diagnostic and therapeutic algorithm by Van Der Straeten

Cr-Co	
< 4 μg/L	Normal <i>steady state</i> , in the absence of clinical and radiographic symptoms → routine follow-up regime
4 – 10 μg/L	Moderately elevated levels , additional investigations advocated; if no abnormalities are found and the patients is asymptomatic \rightarrow a close clinical follow-up and remeasurement of metal ion levels is advisable
10 – 20 μg/L	Sign of <i>increased wear</i> : repeated thorough diagnostic investigations
> 20 μg/L	Concerning as sign of <i>high wear</i> even in the absence of clinical or radiographic symptoms around the hip; Co >20 μg/L may be associated with systemic toxicity: revision has to be considered

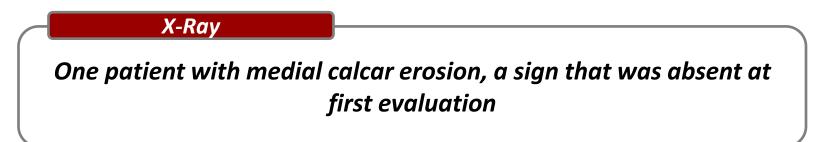
Metal Ions Results




X-ray Results


MRI results

Kaplan Meier curve



A few months ago we started the second evaluation of these patients:

MARS MRI

Increased number of patients with fluid collections and one patient with pseudotumor type 2 turn into type 3

Cr and Co

Slight decline in the levels of ions

Are these datas useful?

Conclusions

Research limitations:

Iarge number of patients lost to follow-up

Revision rate of 11.7% after eight years of follow-up

For the future:

- improving the knowledge of corrosion and wear
- monitoring the patients about the evolution of symptoms.

How should we follow-up asymptomatic metal-on-metal hip resurfacing patients?

ADVANCING SURGICAL STANDARDS

XFORI

UNIVERSITY

A prospective longitudinal cohort study

GS Matharu, AK Low, SJ Ostlere, DW Murray, HG Pandit

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK

International Combined Meeting 2015 British Hip Society and the Società Italiana dell'Anca Milan, Italy

Conflicts of interest

GSM

- Fellowships: (1) The Royal College of Surgeons of England and The Arthritis Research Trust, (2) Arthritis Research UK
- Research grants: (1) The Orthopaedics Trust, (2) The Royal Orthopaedic Hospital Hip Research and Education Charitable Fund

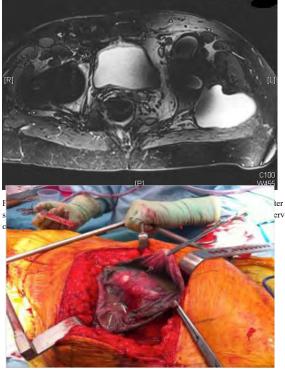
AKL & SJO No conflicts of interest

DWM

- Royalties & paid speaker: Zimmer Biomet
- Research grants: (1) Zimmer Biomet, (2) Stryker

HGP

- Paid speaker: Zimmer Biomet
- Research grants: (1) Zimmer Biomet, (2) Stryker



Background

Over 1 million metal-on-metal (MoM) hip

Pseudotumours

- Mode of failure (ASR <50% at 6-yr)</p>
- Poor short-term outcomes following revision

Response to problem

Regulatory authorities worldwide published follow-up guidance

Early detection Early revision

Improved outcome

Asymptomatic hip resurfacings (HRs)

Follow-Up of Metal-on-Metal Hip Arthroplasty Patients Is Currently Not Evidence Based or Cost Effective

Gulraj S. Matharu, BSc (Hons), MBChB, MRCS, Stephen J. Mellon, PhD, David W. Murray, MD, FRCS (Orth), Hemant G. Pandit, DPhil, FRCS (Orth)

Nuffield Department of Orthopaedics, Rheumatology and Musculoskel et al Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, United Kingdom, OX3 7LD

Current MoM patient follow-up

Not evidence based – lack of longitudinal studies Very costly – up to £8,300,000 (€11,800,000) for annual follow-up of asymptomatic HRs in UK

To assess factors associated with:

1. Ultrasound finding progression

2. Developing new pseudotumours

In asymptomatic HRs undergoing repeat assessment

Patients and Methods

Prospective longitudinal cohort study

2007 / 2008

- Recruited 201 asymptomatic MoM HRs (158 patients) Kwon 2011
- Asymptomatic denied pain & OHS
 <u>></u> 34 (good to excellent)
- Ultrasound + blood metal ions + x-ray + OHS (/48) + UCLA (/10)

2012 / 2013

- 152 MoM HRs (122 patients) recruited
- Repeated investigations (apart from blood metal ions)

Exclusions: revised (n=16), declined/failed to attend (n=29), died (n=4)

Ultrasound assessment

- Performed by 1 experienced radiologist blinded to clinical data
 - Sonoline Antares Siemens Medical Solutions, USA
 - Systematic approach / technique as recommended by the European Society of Skeletal Radiology
- All scans graded and lesion volume measured

Grading system (Matharu 2015, Low 2015)

1 Normal

- 2 Bursa (psoas bursa, trochanteric bursa/thickening)
- **3** Pathological effusion (> 15 mm fluid in joint)
- 4 Pseudotumour (cystic, mixed, solid) *communicating with joint*

Outcomes of interest

1. Progression of ultrasound findings between repeat scans

2. Development of new pseudotumours between repeat scans

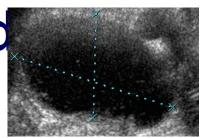
Evidence of progression if at least 1 of:

Increase in scan grade

- Increase in lesion volume but same grade
- Change in pseudotumour consistency (liquid to solid)

Need for revision surgery

Groups compared using t-test, Wilcoxon rank sum test, and Chi-squared test



	152 Hips in 122 Patients
Gender, male/female	99 (65%)/53 (35%)
Age at first ultrasound (y), mean (range)	60.7 (33.3 to 74.7)
Patients with unilateral or bilateral MoM hips, unilateral/bilateral	92 (75%)/30 (25%)
Hip resurfacing design	
Birmingham Hip Resurfacing (Smith & Nephew, Warwick, UK)	82 (54%)
Conserve Plus (Wright Medical, Memphis, TN)	64 (42%)
Recap (Biomet, Bridgend, UK)	6 (4%)
Time between hip resurfacing and first ultrasound (y), mean (range)	3.9 (3.0 to 7.4)
Time interval between repeat ultrasounds (y), mean (range)	4.3 (3.2 to 5.0)
Acetabular component position	A second second
Inclination (*), mean (range)	46.2 (21.3 to 65.5)
Anteversion (*), mean (range)	15.9 (2.0 to 33.0)
Blood metal ion concentration (µg/L), median (IQR)	10.000
Cobalt	2.3 (1.5 to 4.2)
Chromium	2.4 (1.3 to 4.9)
OHS (0-48 scale)	
Median (IQR)	and the law
- 2007/2008 score	47.0 (45.0 to 48.0)
- 2012/2013 score	46.0 (42.8 to 48.0)
Mean (range)	
- Change in score	-0.9 (-17 to 7)
UCLA score (1-10 scale), mean (range)	
- 2007/2008 score	7.2 (3 to 10)
- 2012/2013 score	7.2 (2 to 10)
- Change in score	0.1(-4 to 5)
Hips with pseudotumors revised after repeat ultrasound	4 (3%)

Change in ultrasound grade and volume

Ultrasound Grade	Total number of	Ultrasound Grade 2012/2013			
2007/2008	hips (%)	1	2	3	4
Total number hips (%)	152 (100)	102 (67)	17(11)	6 (4)	27 (18)
1	110 (72)	97 (64)	6(4)	3 (2)	4(3)
2	23 (15)	3 (2)	11(7)	1(1)	8 (5)
3	7 (5)	2 (1)	0(0)	2(1)	3 (2)
4	➡12 (8)	0 (0)	0(0)	0 (0)	12 (8)

Change in grade: **p** = **0.00018**

• 17% (25) increased, 80% (122) no change, 3% (5) decreased

Change in volume: p = 0.0058

• Mean volume increase = 5.9 cm^3 (range, -21.8 cm^3 to 392 cm^3)

Factors predicting ultrasound progression (19%)

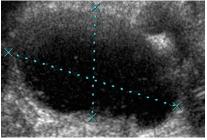
Factors predicting development of new pseudotumours (10%)

Factor	Hips With Progression (n = 29)	Hips Without Progression ($n = 123$)	Р
Gender			
Female	12 (41%)	41 (33%)	.548
Male	17 (59%)	82 (67%)	
Age at first ultrasound (y), mean (range)	62.2 (52.7-74.7)	60.3 (33.3-73.1)	.237
Unilateral or bilateral MoM hips			
Bilateral	11 (38%)	49 (40%)	1.00
Unilateral	18 (62%)	74 (60%)	
Hip resurfacing design			
BHR	14 (48%)	68 (55%)	.756
Conserve	14 (48%)	50 (41%)	
Recap	1 (4%)	5 (4%)	
Time between hip resurfacing and first ultrasound (y), mean (range)	3.9 (3.0-7.4)	3.9 (3.0-7.0)	.947
Time interval between repeat ultrasounds (y), mean (range)	4.2 (3.2-5.0)	4.4 (3.2-5.0)	.080
Acetabular inclination (*), mean (range)	47.2 (27.8-62.6)	46.0 (21.3-65.5)	.501
Acetabular anteversion (°), mean (range)	14.8 (2.7-32.0)	15.3 (2.0-33.0)	.783
Blood cobalt concentration (µg/L), median (IQR)	3.8 (2.6-6.3)	2.0 (1.3-3.6)	.00013ª
Blood chromium concentration (µg/L), median (IQR)	4.1 (2.5-7.5)	2.0 (1.2-3.9)	.00065*
Initial OHS (0-48 scale), median (IQR)	47.0 (45.0-48.0)	47.0 (45.0-48.0)	.775
Change in OHS, mean (range)	-3.6 (-10 to 5)	-0.3 (-2 to 7)	.043ª
Initial UCLA score (1-10 scale), mean (range)	6.9 (4-9)	7.3 (3-10)	.208
Change in UCLA score, mean (range)	-0.1(-3 to 4)	0.1 (-4 to 5)	.534
Initial scan volume (cm3), mean (range)	5.9 (0-60.0)	1.4 (0-100.0)	.036*
Initial scan grade			
1	13 (45%)	97 (79%)	-003 ²
2	9 (31%)	14 (11%)	
3	3 (10%)	4 (3%)	
4	4 (14%)	8 (7%)	

High blood cobalt (p=0.006) and chromium (p=0.023) Only factors predicting new pseudotumour formation

Diagnostic test characteristics for no evidence of ultrasound progression

Optimal results obtained when Normal initial ultrasound <u>AND</u> blood metal ions <2 µg/l = 33% of asymptomatic HR cohort



	\mathbf{v}		
	Normal Initial Ultrasound and Initial Blood Metal Ions <2 µg/L	Normal Initial Ultrasound Alone	Initial Blood Metal lons <2 µg/L Alone
No, of hips (% of cohort)	50 (33)	110(72)	62 (41)
Sensitivity	40 (31-49)	79 (70-85)	48 (39-57)
Specificity	97 (80-100)	55 (36-73)	90 (72-97)
PPV	98 (88-100)	88 (80-93)	95 (85-99)
NPV	27 (19-37)	38 (24-54)	29 (20-40)
LR+	11.6 (1.6-80.2)	1.8 (1.2-2.7)	4.6 (1.6-13.8)
LR-	0.6 (0.5-0.7)	0.4 (0.3-0.6)	0.6 (0.5-0.7)

All diagnostic test characteristic values are provided as percentages with 95% confidence intervals provided in brackets.

Diagnostic test characteristics for not developing new pseudotumours

Optimal results obtained when Normal initial ultrasound <u>AND</u> blood metal ions <2 µg/l = 33% of asymptomatic HR cohort

	Normal Initial Ultrasound and Initial Blood Metal lons <2 µg/L	Normal Initial Ultrasound Alone	Initial Blood Metal lons<2 µg/L Alone
No. of hips (% of cohort)	50 (33)	110 (72)	62 (41)
Sensitivity	37 (29-45)	77 (69-84)	44 (35-52)
Specificity	100 (75-100)	73 (45-91)	87 (58-98)
PPV	100 (91-100)	96 (90-99)	97 (88-99)
NPV	15 (9-23)	26 (14-42)	14 (8-24)
LR+	Infinity (N/A)	2.9 (1.2-6.7)	33 (0.9-12.1)
LR-	0.6 (0.6-0.7)	0.3 (0.2-0.4)	0.6 (0.5-0.8)

All diagnostic test characteristic values are provided as percentages with 95% confidence intervals provided in brackets.

Discussion

Largest MoM HR cohort undergoing re-assessment within 5-yr

• *Previous studies*: small (4-53 HR) and short FU (≤ 2.2 -yr) Almouse 2013, Reito

Asymptomatic + normal ultrasound + ions <2 µg/l (33% hips)

- Very little risk of progression of ultrasound findings (2%)
- No risk of developing new pseudotumours (0%)
- Guide worldwide follow-up + financial savings (£2.7 million/yr)
- All patients need baseline assessment = imaging + ions
 - Imaging or ions alone not as effective for excluding pt from FU

Limitations

Not applicable: other designs/THRs and >5-yr follow-up

 Asymptomatic MoM HR patients DO NOT require repeat follow-up within 5 years if they have:

Normal ultrasound <u>AND</u> Normal blood metal ions (<2 µg/l)

- Annual European follow-up of asymptomatic MoM HRs
 - Costly and unnecessary

Acknowledgments

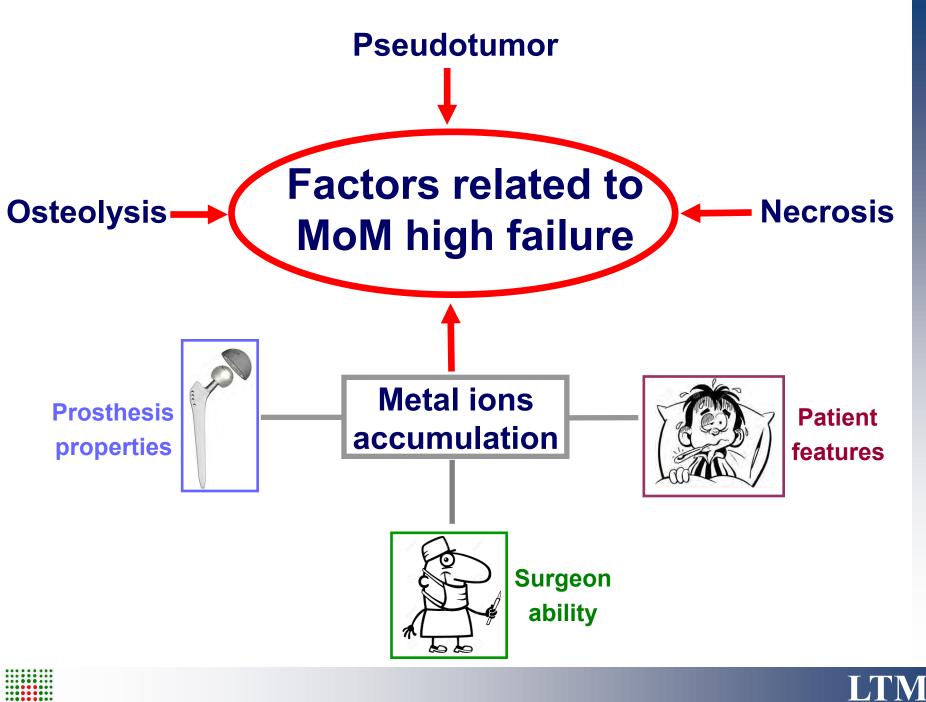
 The authors would like to thank The Royal College of Surgeons of England and The Arthritis Research Trust for providing one author with funding in the form of a Surgical Research Fellowship

How Should We Follow-Up Asymptomatic Metal-on-Metal Hip Resurfacing Patients? A Prospective Longitudinal Cohort Study

Adrian K. Low, MBBS, PhD, FRACS, Gulraj S. Matharu, BSc (Hons), MRCS, MRes, Simon J. Ostlere, FRCP, FRCR, David W. Murray, MD, FRCS (Orth), Hemant G. Pandit, DPhil, FRCS (Orth)

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, United Kingdom, OX3 7ID

Istituto Ortopedico Rizzoli di Bologna Istituto di Ricovero e Cura a Carattere Scientifico


Conditions influencing cobalt and chromium circulating ions level in metal-on-metal patients

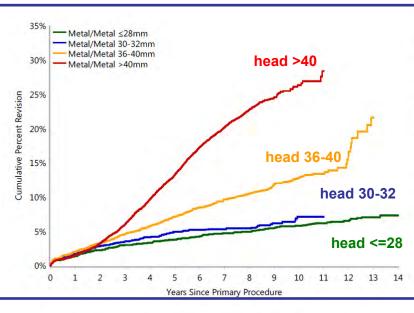
A. <u>Beraudi</u>, S. Stea, D. De Pasquale, S. Catalani, M. Baleani,
 B. Bordini, M. Amabile, S. Canaider, E. Guerra, A. Toni

Medical Technology Laboratory Rizzoli Orthopaedic Institute Bologna

© LTM-IOR 2015

© LTM-IOR 2015

Laboratorio di Tecnologia Medica


Cup covering

2010 August: **DePuy Recall**

Head dimension

HR - adjusted for age and gender
Metal/Metal 30-32mm vs Metal/Metal ≤28mm Entire Period: HR=1.24 (0.98, 1.56),p=0.079

Metal/Metal 36-40mm vs Metal/Metal ≤28mm 0 - 4.5Yr: HR=1.75 (1.41, 2.17),p<0.001 4.5Yr+: HR=3.48 (2.66, 4.56),p<0.001

Metal/Metal >40mm vs Metal/Metal ≤28mm 0 - 1.5Yr: HR=1.40 (1.10, 1.77),p=0.005 1.5Yr - 2Yr: HR=2.67 (1.83, 3.90),p<0.001 2Yr - 2.5Yr: HR=4.06 (2.78, 5.94),p<0.001 2.5Yr - 3Yr: HR=3.96 (2.74, 5.74),p<0.001 3Yr - 4.5Yr: HR=6.72 (5.19, 8.71),p<0.001 4.5Yr+: HR=9.78 (7.72, 12.38),p<0.001

2015 stemmed MoM higher failure for bigger head

Laboratorio di Tecnologia Medica

The Trunion role: a proof Same prosthesis: resurfacing vs stemmed Different ions level detected

Fig. 1A–B The figure shows (A) the Durom[®] (Zimmer Inc., Warsaw, IN) acetabular cup and Durom[®] resurfacing femoral component; (B) the M/L Taper[®] (Zimmer Inc.) stem, Metasul[®] (Zimmer Inc.) large femoral heads, and Cr-Co alloy metal sleeve adaptors.

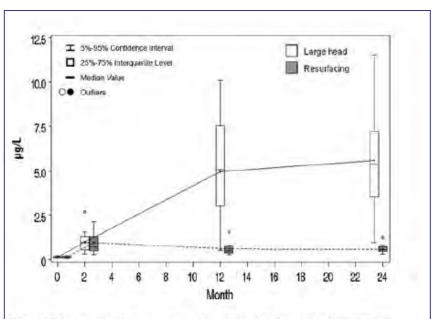
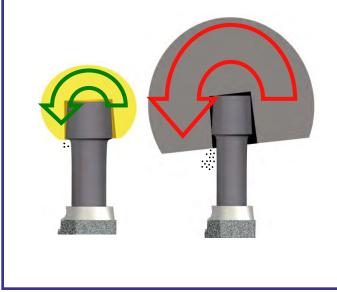


Fig. 2 The graph shows serum cobalt in the large-head metal-onmetal total hip and resurfacing groups preoperatively, at 2 months, 1 year and 2 years postoperatively. Boxes are joined by lines through their means.

DS Garbuz, et al Clin Orthop Relat Res (2010) 468:318–325



© LTM-IOR 2015

Trunion role

The problem mainly occurs in big head due to its bigger torsional moment

1- A Toni, et al, Seminars in Arthroplasty (2012) 23(4), 248–250 2- M Baleani et al, Abstract AAOSS 2013

© LTM-IOR 2015

Our experience: prosthesis properties

Biomarkers

International Orthopaedics (SICOT) DOI 10.1007/s00264-013-2137-5

ORIGINAL PAPER

Metal-on-metal hip prostheses: Correlation between debris in the synovial fluid and levels of cobalt and chromium ions in the bloodstream

Dalila De Pasquale • Susanna Stea • Stefano Squarzoni • Barbara Bordini • Marilina Amabile • Simona Catalani • Pietro Apostoli • Aldo Toni

Received: 26 July 2013 / Accepted: 19 September 2013 © Springer-Verlag Berlin Heidelberg 2013 http://informahealthcare.com/bmk ISSN: 1354-750X (print), 1366-5804 (electronic)

Biomarkers, Early Online: 1–7 © 2013 Informa UK Ltd. DOI: 10.3109/1354750X.2013.846413 informa healthcare

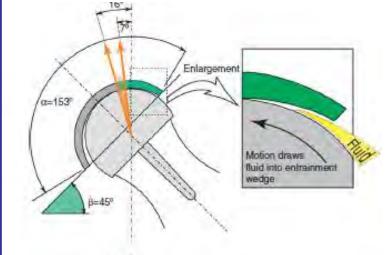
Detection of cobalt in synovial fluid from metal-on-metal hip prosthesis: correlation with the ion haematic level

Alina Beraudi¹, Simona Catalani², Monica Montesi¹, Susanna Stea¹, Alessandra Sudanese^{1,3}, Pietro Apostoli², and Aldo Toni^{1,3}

40 coupled patients

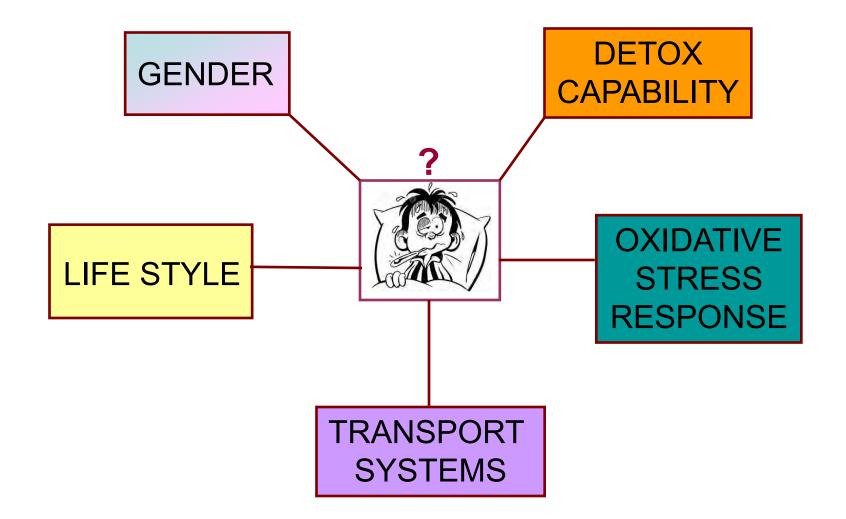
Articular metal debries presence correlates with metal ions level

54 patients


Articular cobalt ions level correlates with haematic cobalt ions level

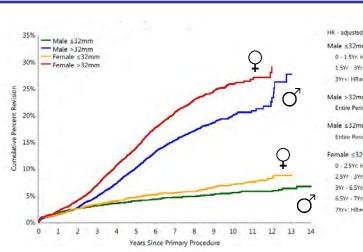
Blood is the mirror of articular status

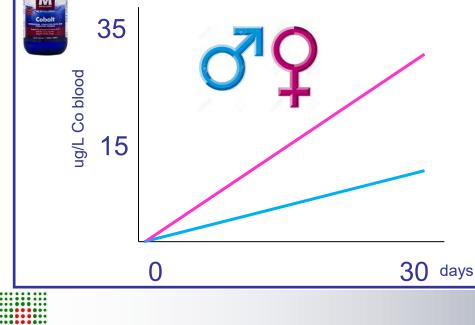
Positioning of the cup


Cup angle 45° Correct lubrification Restrained damage

9K

Which are the patient features involved in metal ions management?





HR - adjusted for age Male ≤32mm vs Male >32mm 0 - 1.5Yr. HR=1.06 (0.80, 1.40),p=0.702 1.5Yr. - 3Yr. HR=0.33 (0.22, 0.50),p<0.001 3Yr+: HR=0.14 (0.11, 0.19),p<0.001 Male >32mm vs Female >32mm Entire Period: HR=0.71 (0.66, 0.77),p<0.001 Male ≤32mm vs Female ≤32mm Entire Period: HR=0.77 (0.62, 0.97),p=0.026 Female ≤32mm vs Female >32mm 0 - 2.5Yr. HR=0.66 (0.48, 0.75),p<0.001 2.5Yr. - 3Yr. HR=0.66 (0.48, 0.75),p<0.001 3Yr - 6.5Yr. HR=0.14 (0.11, 0.18),p<0.001 3Yr. - 6.5Yr. HR=0.12 (0.08, 0.20),p<0.001 7Yr+: HR=0.18 (0.13, 0.25),p<0.001

2015 stemmed MoM higher failure in women

1 mg/die Cobalt for 1 month, per os

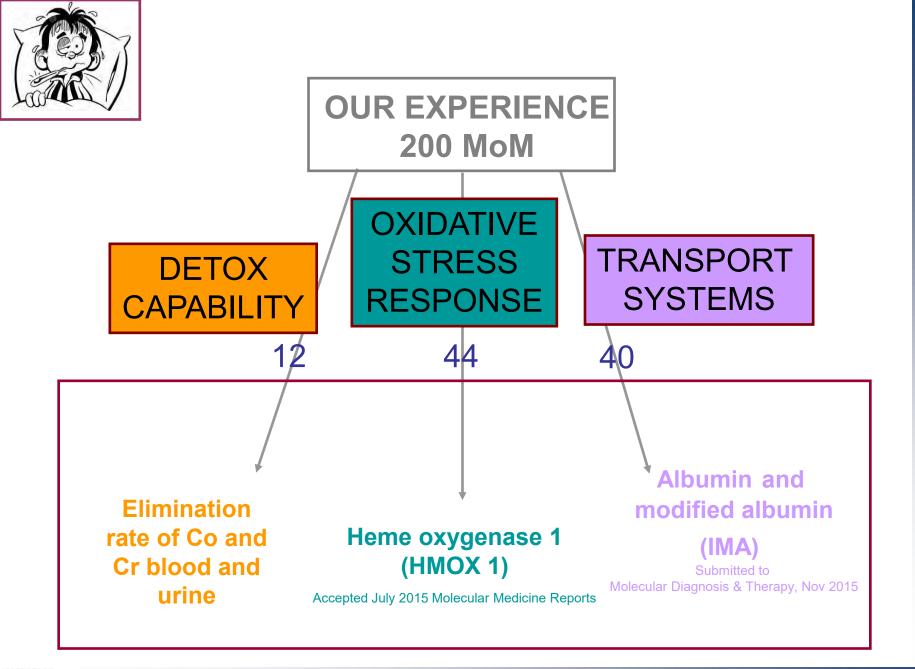
2500 \$

Cobalt management is different between genders

Finley et al, 2013, J Toxicol Environ Health A, 76, 1210-24

Our experience

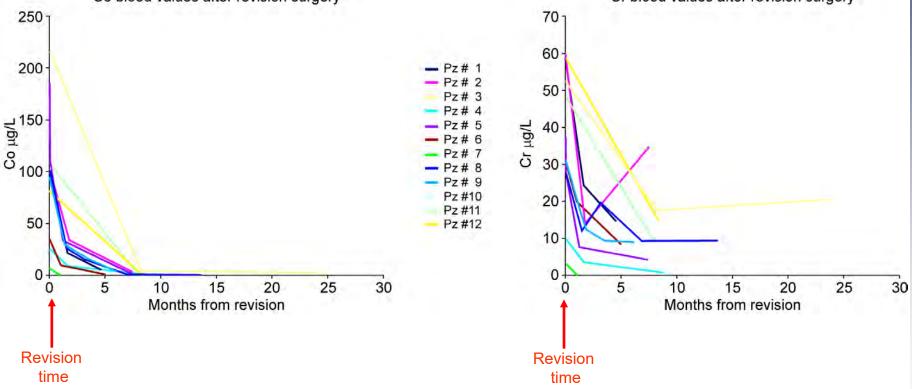
200 MoM patients collected for their haematic and urinary values of Cr and Co


Stemmed and resurfacing
Primary or revised THA

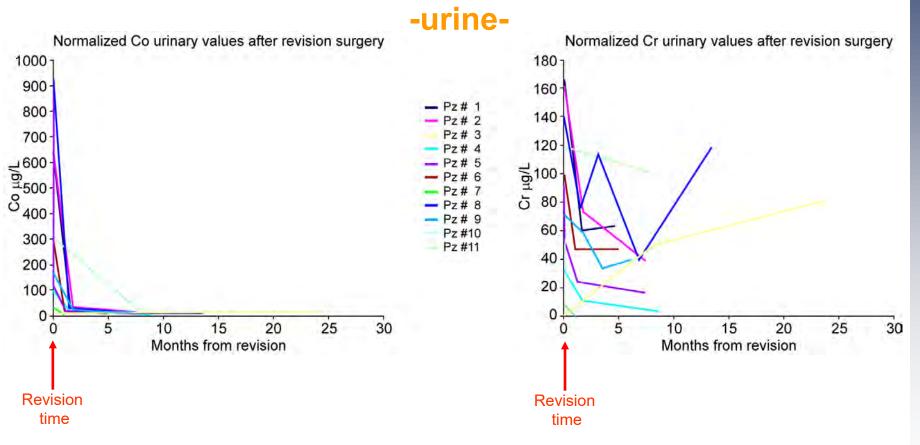
ASR included
Symptomatic and not
Different follow up
Male and female

Large and small heads

Cut off assumed as warning for safety **7µg/l in whole blood for both ions**


For those patients in which it was possible to detect ions levels during serial visits...

Co blood values after revision surgery Co bl


Cobalt in blood reachs 7 µg/l in about seven months after revision surgery. For Chromium it doesn't happen

Elimination rate of Cobalt and Chromium

Cobalt in urine reachs 7 µg/l in about seven months after revision surgery. For Chromium it doesn't happen

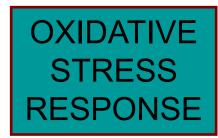
Background for studies HMOX-1 and Albumin

•Cobalt is vehiculated by **albumin**

•Ischemia Modified Albumin (IMA) is a form of albumin modified in the site of linkage with cobalt

•Many studies have correlated the presence of these ions, besides other factors, to the induction of oxidative stress response

•Heme-Oxygenase-1 (**HMOX-1**) is one of the most important enzyme involved in oxidative stress response



Aims

Investigate:

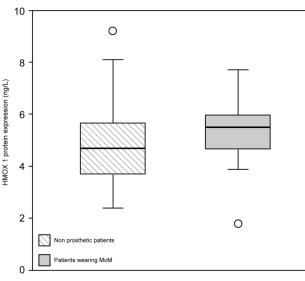
the subject specific capability to transport metal ions (ALBUMIN study)

the subject specific capability to manage the response to them (HMOX-1 study)

The subject specific capability to transport metal ions (ALBUMIN study) MUTATIONAL SCREENING OF ALBUMIN:

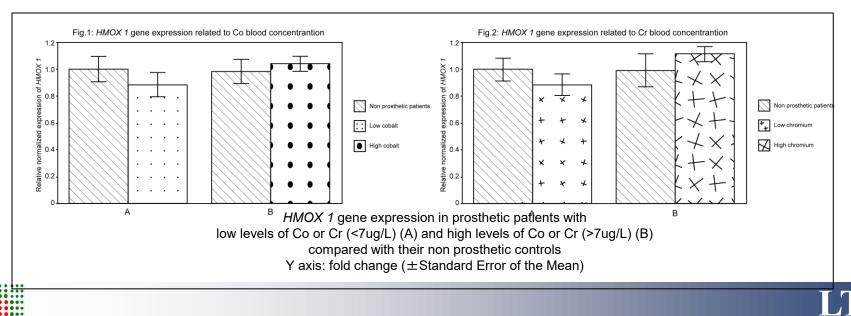
in MoM prosthetic patients results in the **absence** of nucleotidic changes compared to the *ALB* reference sequence

DETERMINATION OF ALBUMIN AND IMA:


IMA and ALB **are not correlated** to Cobalt and Chromium values in blood, serum and urine, and they are not statistically different between patients with high or low metal ions

The subject specific capability to manage the response to Cr and Co (HMOX-1 study)

No statisitcally significant differences between prosthetic and non prosthetic patients as well as between patients with high and low ions levels



n (ng/L)

Laboratorio di Tecnologia Medica

HMOX 1 protein expression in prosthetic and non prosthetic patients

Conclusions

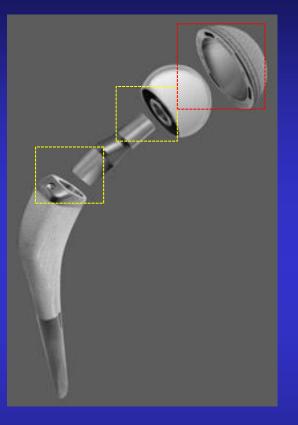
The two different elimination rates for Cr and Co seem to have a similar trend in all the patients

The investigated proteins/gene involved in transport and oxidative stress response are not correlated neither to metal ion levels nor to specific critical symptomatology

INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA 26-27 NOVEMBER 2015 MILAN, ITALY

The Problem of Metal-on-Metal Total Hip Arthroplasty. Our experience in 59 cases

G. Zarattini*, A.Spreafico*, C.Castelli**, G.Perino*** UE Pazzaglia*

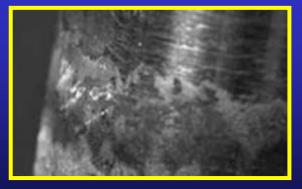

*Clinica Ortopedica Università di Brescia

** U.S.C. Ortopedia e Traumatologia, Azienda Ospedaliera «Papa Giovanni XXIII» di Bergamo

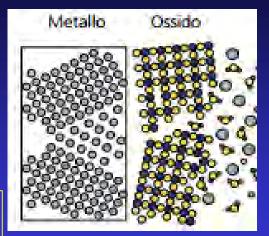
*****Hospital for Special Surgery, NY, NY**

BACKGROUND

sliding tribocorrosion


abrasion wear

fretting corrosion



COMPLICATIONS OF CoCrMo ALLOY

Systemic

Apostoli et al., 2013 Co cause problem in : Liver, Kidney, Lungs, Heart, Pancreas and Nervous System

Adverse Local Tissue Reactions

Langton et al., 2010 Cr in periprosthetic tissue

Corrosion Electrochemical Phenomenon

Goldberg et al., 2002; Burroughs et al., 2006 Fricka et al., 2012; Langton et al., 2012

Wear Physical Phenomenon

In case of metallic ion intoxication due to implant malfunction it is recommended:

- 1. to remove the prosthesis,
- 2. copious irrigation of the periprosthetic tissues
- 3. resection of the periprosthetic tissues

With these measures it was possible to halve blood concentrations of Co e Cr in about 50 days (Durrani et al., 2014)

In severe cases with neurological complications, it is recommended the use of chelating agents (Pazzaglia et al., 2011)

STUDY DESIGN

Evaluation of a population of 57 patients, with 59 MoM (CoCrMo) *Primary Total Hip Arthroplasty* performed in our orthopaedic department from 2004 to 2009

DePuy Orthopaedics (Warsaw, Indiana, USA)

Biomet-Orthopaedics (Dietikon, Switzerland)

56 patients - 58 THR

MATERIALS AND METHODS

Diagnostic-therapeutic protocol

- Orthopedic outpatient visit
- Hip radiographs
- Ionic dosage of Co and Cr by Inductively Coupled Plasma -Mass Spectrometry

MRI with Metal Artifact Reduction Sequence

INDICATIONS TO REVISION

Radiographic signs of mobilization

Pseudotumor at MRI

Co and Cr: >7µg/l

Oxford Hip Score < 30

Neor	Very mild ²	MiM	Moderate ⁴	Severe
		able with washing and drying		
No trauble at all ⁴	Very little trouble ²	Medicrate trouble ¹	Extreme difficulty ⁴	Impossible to do
During the past 4 we	reks, have you had any tro	this getting in and out of a co	x or using public itsesport	because of your hip?
No trouble at all ¹	Very little trouble?	Moderate trouble?	Extreme difficulty ⁴	Impossible to do
During the past 4 we	reks, have you been able to	put on a pair of socks, stock	ing or tights?	
Yes, easily ²	With little difficulty ²	With moderate difficulty ³	With extreme difficulty*	Nu, impossible ²
During the past 4 we	reks, could you do the hou	schold shopping on your ow	n?	
Yes, easily?	With little difficulty ³	With moderate difficulty ²	With extreme difficulty ⁴	No, impossible ³
During the past 4 we	reka, for how long have yo	a been able to walk before p	ain from your hip become	s severe (with or with
No pain/more than 30 minutes ¹	16 - 30 minutes ²	5 - 15 minutes ⁵	Around the house only ⁴	Not at all - pain severe on walking
During the past 4 we	reks, have you been able to	climb a flight of stairs?		
Yes, easily ¹	With little difficulty ²	With moderate difficulty ²	With extreme difficulty*	No, impossible ⁴
During the past 4 we	reks, after a meal (sat at a t	able), how painful has it been	l n for you to stand up from	a chair because of you
Not at all painful ²	Nightly pointal	Mederately painful ²	Very painfal ⁴	Unbearable ³
During the past 4 we	reks, have you been limpin	g when walking because of	your hip?	
	Sometimes, or just at first ²	Often, not just at first ⁵	Most of the time*	All of the time
Rarely/never ¹				
		iden or severe pain - "shootir	ng", "stubbling", or "spasses" Most daws ⁴	- from the affected h Every day
During the past 4 we				1.1117 487
	eeks, have you had any sub Only 1 or 2 days ¹	Some days ⁷		
During the post 4 we No days" During the post 4 we	Only 1 or 2 days ¹	rum your hip interfored with		
During the past 4 we No days ¹	Only 1 or 2 days ¹		h your usual work (include Greath [®]	y housework)? Totally ⁵
During the past 4 we No days ¹ During the past 4 we Not at all ¹	Only 1 or 2 days ¹ orks, how much has pain f A Brife bit ²	rum your hip interfored with	Greatly*	

implant revision

MATERIALS AND METHODS

Population study

Entire population	Value
Number of patients	57
Number of prosthesis	59
Male/Female	53/4
Average age (Years)	59.3

Revised population	Value
Number of patients	7
Number of prosthesis	8
Male/Female	4/3
Average age (years)	65,12
Average length	68,75
(months)	

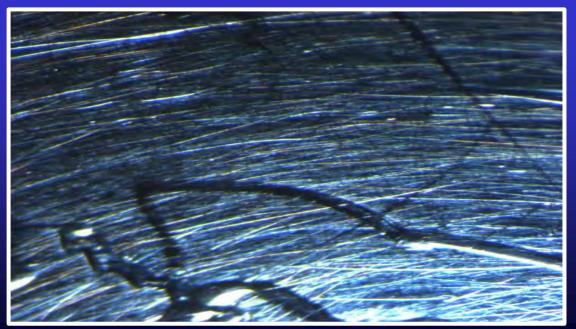
Case	Implant life time (months)	Reason for revision	Oxford Hip Score (OHS)
n.1	89	Local tissue reaction	48
n.2	51	Aseptic loosening	(7)
n.3	74	Local tissue reaction	30
n.4	89	Local tissue reaction	46
n.5	52	Local tissue reaction	29
n.6	91	Local tissue reaction	46
n.7	52	Local tissue reaction	15
n.8	52	Local tissue reaction	20

OHS evaluation: 48-41 excellent; 40-34 good, 33-27 moderate, below 27 poor. (Murray et al., 2007)

MATERIALS AND METHODS

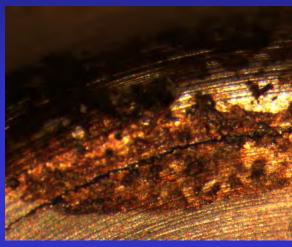
Study population

- **Hystological Analysis**: tissues were fixed in 10% buffered formaldehyde, processed, cut, and stained with hematoxylin-eosin and Prussian Blue. Histological analysis was performed by an experienced consultant orthopedic pathologist (GP).
- **Prosthetic analysis**: ultrasonic cleaning, stereo microscope observation and *analysis profilometric* at independent laboratories.



Implant profilometric analysis on head surfaces

Value	Head abrasion wear (µm/year)	Cup abrasion wear (µm/year)	
Min	0,41	0,1	
Average	2,42	1,27	
Max	10,41	2,98	


Mean normal value: ≈1 μm/year

Implant analysis

7 metallic implants with fretting corrosion of morse taper junction

Dose ion in whole blood of reviewed population

Value	Cobalt (µg/l)	Chromium (µg/l)	Case	Cobalt (µg/l)	Chromium (µg/l)
Min.	0,16	0,35	n.1	8,8	3,10
Average	5,35	4,53	n.2 (bilateral)	11,95	5,20
Max.	11,95	18,7	n.3	4,04	3,27
Iviax.	11,95	10,7	n.4	0,16	0,35
			n.5	9,2	18,7
			n.6	2,35	3,06
			n.7	4,97	0,95
			n.8	1,4	0,40

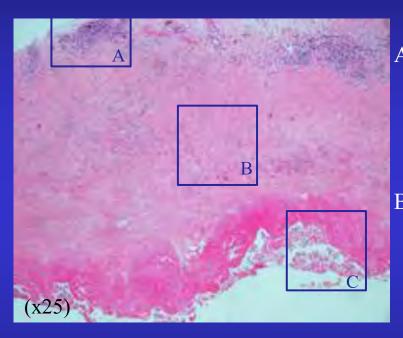
Threshold for Co and Cr: 7µg/l (Medicines and Healthcare Products Regulatory Agency, 2010)

RESULTS Local tissue reactions

6 patients

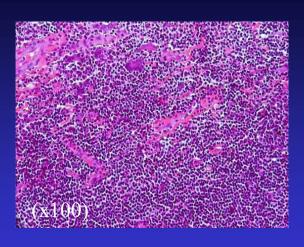
Pseudotumor

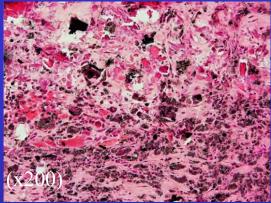
Pandit et al., 2008

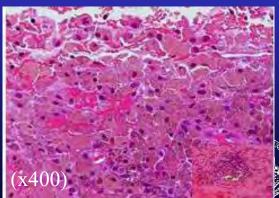


pathogenetic mechanism still debated

RESULTS Local tissue reactions






A) Lymphocytic infiltrate

B) Macrophage infiltrate containing products derived from the implant

C) Cell Necrosis Luminal expholiation of necrotic macrophagic forms

A.L.V.A.L. Score

Aseptic Lynphocytis Vasculites Associate Lesion

Average = 6

Points	Synovial lining			
0	Intact synovial lining			
1	Focal loss of synovial surface, fibrin attachment m occur			
2	Moderate to marked loss of synovial surface, fil attachment			
3	Complete loss of synovium, abundant attached fibrin and /or necrosis of lining tissue			
Points	Inflammatory infiltrate			
0	Minimal inflammatory cell infiltrates			
1	Predominantly macrophages, occasional lymphocytes may occur			
2	Mix of macrophages and lymphocytes, either diffu and/or small (< 50% of hpf) perivascular aggregates			
3	Mix of macrophages and lymphocytes, large (> 50% hpf) perivascular aggregates may occur			
4	Predominantly lymphocytes, mostly in multiple, large (> 50% hpf) perivascular aggregates, follicles may be present			
Points	Tissue organization			
0	Normal tissue arrangement			
1	Mostly normal tissue arrangement, small areas of synovial hyperplasia, focal necrosis may occur			
2	Marked loss of normal arrangement, appearance of distinct cellular and acellular zones, thick fibrous layers may occur			
3	Perivascular lymphocytic aggregates mostly located distally, thick acellular areas may occur			
	Sum			
	Low = 0-4			
	Moderate = $5-8$			
	High = 9-10			

ALVAL = aseptic lymphocytic vasculitis-associated lesion; hpf = high-power field.

CONCLUSIONS

1. The head-neck junction is an important site of metallic generation => -*Watch modularity implant* -

2. Ions dosage in whole blood is not directly correlated to the immunological reaction (pseudotumor) in periprosthetic tissue
 => Use MRI to evaluate the inflammatory periprosthetic reaction

3. The main adverse reaction begin from immunological response to the metal particulate

5 year clinical outcomes of 601 metal-on-metal total hip replacements with 36mm heads

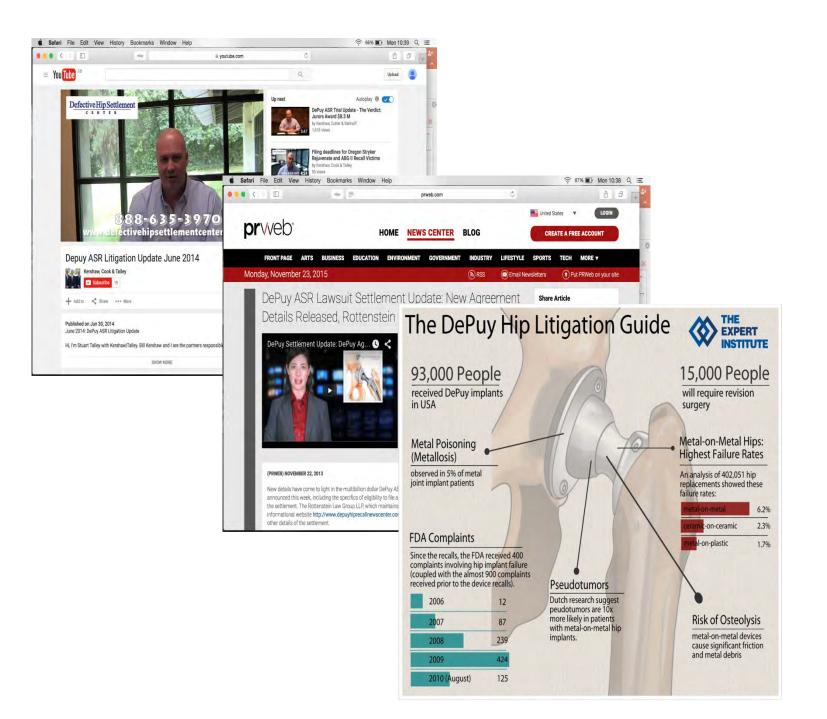
AMIT ATREY ORTHOPAEDIC CONSULTANT WEST SUFFOLK HOSPITAL UK NASIR HUSSAIN MEDICAL STUDENT MICHIGAN UNIVERSITY ANDREW SHEPHERD ORTHOPAEDIC CONSULTANT WARWICK STEVE YOUNG ORTHOPAEDIC CONSUTLANT WARWICK

METAL ON METAL

 MoM 35% of ALL BEARING SURFACES IN THE US

• 32,000 MoM on the English NJR

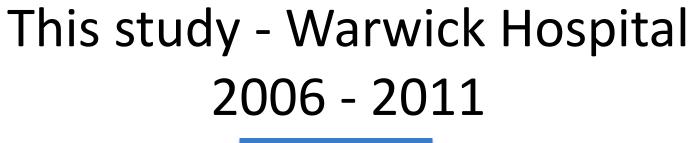
METAL ON METAL

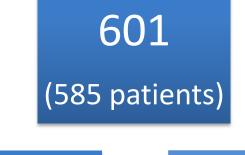

Study Group	Number of implants	Type of implant	Mean time of follow up (years)	Number of Revisions
Lailiana et al.	203	36mm Corail- Pinnacle	6.3	17%
Hug et al.	190	ASR THA	3.3	13%

This study

Corail-Pinnacle implant

- Most implanted THA in the UK – MoM
 - -bigger head
 - –? Less dislocation
 - -? Less wear

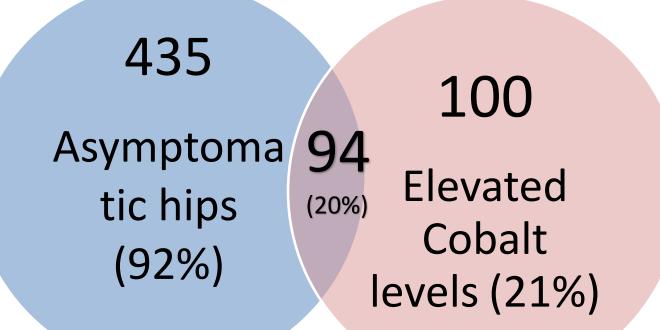



Clinic based on MHRA guidelines 2012

Lecture, consultation, pain scores, metal ion levels & imaging

PATIENTS PUT INTO TWO GROUPS

SYMPTOMATIC ASYMPTOMATIC


36

Declined clinic

328 females141 males32 bilaterals

476 seen in clinic

Of the 476 patients

Of all 476 patients in clinic

100 41 High 6 Symptoma Cobalt tic (1%) >120nmol (8%) (21%)

All 100 symptomatic patients

- ALL HAD USS
 - -5 SHOWED PSEUDOCYST/ CAPSULE
 - 2 HAD EVIDENCE OF SOFT TISSUE DESTRUCTION
 - -ALL 7 REVISED

ALL REVISION

REASON FOR REVISION	NUMBER REVISED
Dislocation	6
Infection	4
Patient Request	1
Leg length discrepancy	2
ARMD	12
Aseptic Loosening	4

Oxford Hip Score

- OHS is a good predictor of SYMTOMATIC patients
- Correlation with revision p < 0.01

BUT

• NO correlation with Co or Chromium levels (coefficient of 0.05)

Size of Stem

Every stem size increase -> ↓ 11nmol/L cobalt

• ? Increased stiffness of the implant

Cobalt & Chromium

- Cobalt was more often **1** without chromium
- Chromium was NEVER INDEPENDENTLY 1
- Confirms what Garbuz (Vancouver) has proven
 - MoM resurfacings Co and Cr **1** together
 - MoM THAs Co is solely elevated (wear at the trunion)

COMPARATIVE DATA

Study Group	Number of implants	Type of implant	Mean time of follow up	Revisions directly due to ARMD
This study group	476	36mm Corail- Pinnacle	5.6 years	12 (2.2%)
Lailiana et al.	203	36mm Corail- Pinnacle	6.3	29 (14%)
Hug et al.	190	ASR resurfacing and THA	3.3years	14 (%)

Conclusions

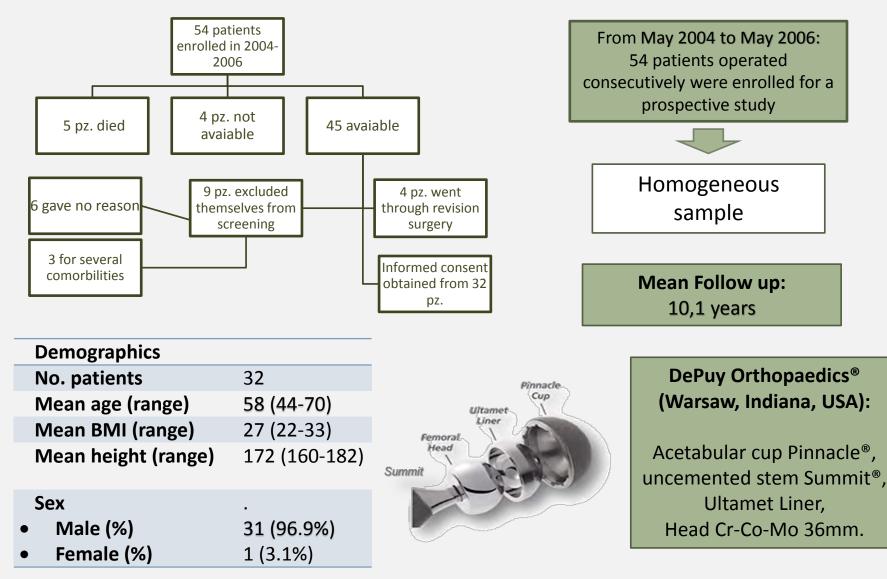
- 7 years survivorship is 94.8%
- Better than that of the large Head MoM/ ASR
- OHS and symptoms are the only predictors of revision
- Cobalt and Chromium levels are NOT predictive of ARMD

Conclusions

- Co (the active element in tissue destruction) is COMMONLY ELEVATED – WITHOUT Cr
- ? MACC AT THE TAPER
- THE MHRA PROGRAMME OF FOLLOW
 UP PROVIDES A GOOD FRAMEWORK

Sistema Sanitario

Azienda Ospedaliera Papa Giovanni XXIII Bergamo


> Regione Lombardia

Dott. Rudy SANGALETTI Dott. Flavio BARBIERI Chiar.mo Prof. Claudio Carlo CASTELLI

Hip arthroplasty with metal-on-metal tribology:

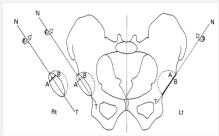
10-YEAR FOLLOW-UP AND IONIC RELEASE TREND IN 36MM HEAD IMPLANTS

Metal-on-Metal total hip arthroplasty

- Study outcome of implants with large diameter heads MOM in young men with great functional requirements.
- Study trends of ionic release and wear
- Study incidence of ARMD and correlation with the concentration of Cr-Co in the circulation

<u>Outcome</u>

<u>Methods</u>


- Physical Examination
- OHS (Oxford hip score)
- HHS (Harris hip score)
- UCLA activity score (University of California , Los Angeles)
- Radiological RX standard AP and Axial assessed with:
 - o Engh score
 - Osteolysis and radiolucent areas Gruen
 - Tilt anteversion : Reito at al.
 - o acetabular inclination
 - o OFFSET

antiversione = $\sin^{-1} \frac{p/e}{\sqrt{1-\frac{p}{2}}}$ $\sqrt{(r/e)^2-1}$

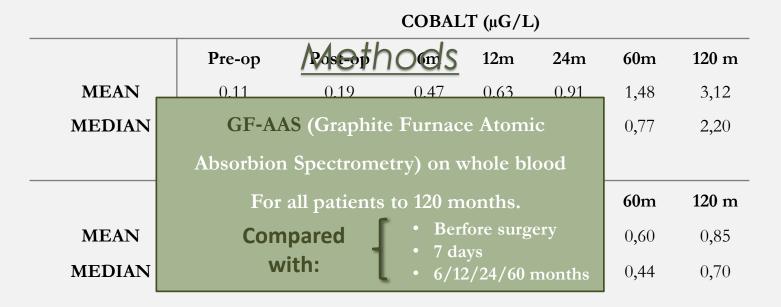
<u>Outcome</u>

In a population with large functional requirements:

- 60 months : 100 % UCLA≥ 6/72 % UCLA≥8
- Men : 97 %
- mean age at operation : 58 years
- Average BMI : 27

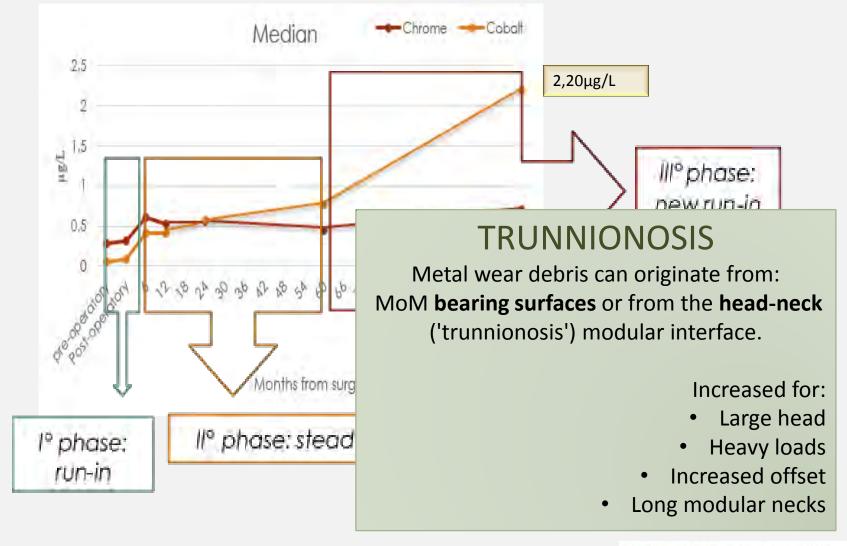
- 97% ideal clinical outcome (EO OHS HHS
- 93.5 % clinical- radiological outcome good / excellent (ENGHosteolysis)
- 12.5% Focal osteolysis rate
- No case of prosthetic dislocation

Implant survival rate: 5 years : 96 % (52/54) 10 years : 93.2 % (41/44)



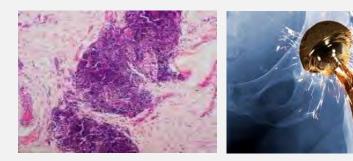
National Institute for Health and Clinical Excellence

	2 years	5 years	6 years	7 years	8 years	9 years	10 years
Engh et Al.	, i i i i i i i i i i i i i i i i i i i	2%	, e	, i i i i i i i i i i i i i i i i i i i	, i i i i i i i i i i i i i i i i i i i	, i i i i i i i i i i i i i i i i i i i	
Barrett et Al.		3%					
Bernasek et Al.						4,2%	
Mokka et al.				4%			
Alison et al.		3.2%					
Varnum et al.				7%			
Bergamo		4%					7.7%


<u>Cr-Co: Trend of ionic release</u>

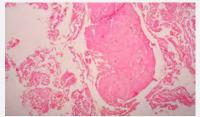
Ion concentration Cr-Co is correlated to the rate of wear, fretting and corrosion

<u>Cr-Co: Trend of ionic release</u>

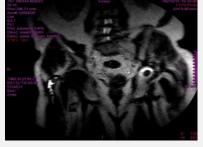

MHRA, EFORT and SIOT indicate advanced imaging in high risk patients:

	Low risk	High risk
	Asymptomatic	Symptomatic
• HHS	- >80	- <79
• OHS	- >40	- <29
Clinical	Negative	Groin pain,
exam		palpable mass,
		tension feeling,
		lameness feeling.
radiology	Engh > 0	Engh < 0
	No osteolysis	Osteolysis
	o radiolucent	Radiolucent lines
	lines	
lonic	<2 µg/L o <7	>7 µg/L o >2
levels Cr-	μg/L without	µg/L increase
Со	increase	between 2 checks
	between the	(MHRA
	checks	indications)

30% High-risk patients: US or MARS RMI in all high-risk patients .



Rate of ARMD from 8,6 to 14,3% included patients that underwent revision surgery



3 patients reviewed for ARMD : $2 = Co < 2\mu g / L$ $1 = Co < 5\mu g / L$ None of the patients reviewed for pain showed concentrations of Cr - Co exceeding the alert thresholds (SIOT / MHRA = 2/7 mg/L)

There is no correlation between the concentration of Cr / Co and incidence of ARMD

From these data it appears that the detection of ions concentrations in circle does not represent a good screening test

Hip arthroplasty with metal-onmetal tribology:

10-YEAR FOLLOW-UP AND IONIC RELEASE TREND IN 36MM HEAD IMPLANTS

Dott. **Rudy SANGALETTI** Dott. **Flavio BARBIERI** Prof. **Claudio Carlo CASTELLI**

<u>Conclusions</u>

Outcome

Cr-Co : Trend of ionic release

Follow-up MoM

Metasul 28 mm MoM total hip replacements: Adverse reaction to metal debris incidence & outcome at 10 years

S Singh R Kotwal P Roberts Royal Gwent & St Woolos Hospital Newport, United Kingdom

Declaration: None of the authors have any commercial interest in the product or company discussed..

28mm Metal-on-Metal Metasul Bearing

• Introduced in 1988.

 Metasul bearing - cobalt-chromium-molybdenum alloy with a high carbide content of 0.20- 0.25%.*

• Wrought forged alloy

MHRA Guidance 2012

Issued: 25 June 2012 at 11:00

Ref: MDA/2012/036

Appendix

Management recommendations for patients with metal-on-metal hip replacement implants

	MoM hip resurfacing (no stem)		Stemmed MoM total hip replacements – femoral head diameter <36mm		Stemmed MoM total hip replacements – femoral head diameter ≥36mm		DePuy ASR [™] hip replacements (all types)	
	Symptomatic patients	Asymptomatic patients	Symptomatic patients	Asymptomatic patients	Symptomatic patients	Asymptomatic patients	Symptomatic Patients	Asymptomatic patients
Patient follow-up	Annually for the life of the implant	According to local protocols	Annually for the life of the implant	According to local protocols	Annually for the life of the implant	Annually for the life of the implant	Annually for the life of the implant	Annually for the life of the implant
Imaging: MARS MRI or ultrasound	Recommended in all cases	No - unless concern exists for cohort or patient becomes symptomatic	Recommended in all cases	No - unless concern exists for cohort or patient becomes symptomatic	Recommended in all cases	Recommended if blood metal ion levels rising	Recommended in all cases	Recommended in all cases
1 st blood metal ion level test	Yes	No - unless concern exists for cohort or patient becomes symptomatic	Yes	No - unless concern exists for cohort or patient becomes symptomatic	Yes	Yes	Yes	Yes
Results of 1 st blood metal ion level test	Blood metal ion level >7ppb indicates potential for soft tissue reaction		Blood metal ion level >7ppb indicates potential for soft tissue reaction		Blood metal ion level >7ppb indicates potential for soft tissue reaction	If blood metal ion level >7ppb then second blood test required 3 months later	Blood metal ion level >7ppb indicates potential for soft tissue reaction	If blood metal ion level >7ppb then second blood test required 3 months later
2 nd blood metal ion level test	Yes - 3 months after 1 st blood test if result was >7ppb		Yes - 3 months after 1 st blood test if result was >7ppb		Yes - 3 months after 1 st blood test if result was >7ppb	Yes - 3 months after 1 st blood test if result was >7ppb	Yes - 3 months after 1 st blood test if result was >7ppb	Yes - 3 months after 1 st blood test if result was >7ppb
Results of 2 nd blood metal ion level test	Blood metal ion level >7ppb indicates potential for soft tissue reaction especially if greater than previously		Blood metal ion level >7ppb indicates potential for soft tissue reaction especially if greater than previously		Blood metal ion level >7ppb indicates potential for soft tissue reaction especially if greater than previously	If blood metal ion levels rising - further investigation required including imaging	Blood metal ion level >7ppb indicates potential for soft tissue reaction especially if greater than previously	Blood metal ion level rising indicates potential for soft tissue reaction
Consider need for revision	If imaging is abnormal and/or blood metal ion levels rising		If imaging is abnormal and/or blood metal ion levels rising		If imaging is abnormal and/or blood metal ion levels rising	If imaging is abnormal and/or blood metal ion levels rising	If imaging is abnormal and/or blood metal ion levels rising	If imaging is abnormal and/or blood metal ion levels rising

Notes and guidance on next page


Medicines and Healthcare products Regulatory Agency

Page 6 of 7

Aims

- Primary aim:
 - Determine incidence of Adverse Reaction to Metal Debris (ARMD)

- Secondary aim:
 - assess survival of implant
 - complications
 - revision rates and causes.

Material & Methods

- Prospectively collected data
- Single surgeon series
- Patients followed-up in MoM clinics and arthroplasty clinics.
- Whole blood metal ion (cobalt & chromium) checked in patients who came to clinic.
- Magnetic resonance imaging (MRI) performed on those with raised metal ion levels or were symptomatic

Material & Methods

- Total hips implanted = 70
- Total patients = 60
- Mean age = 61.4 years
- Male: Female = 1:3
- Mean follow-up = 10 years (range 6-15 years)

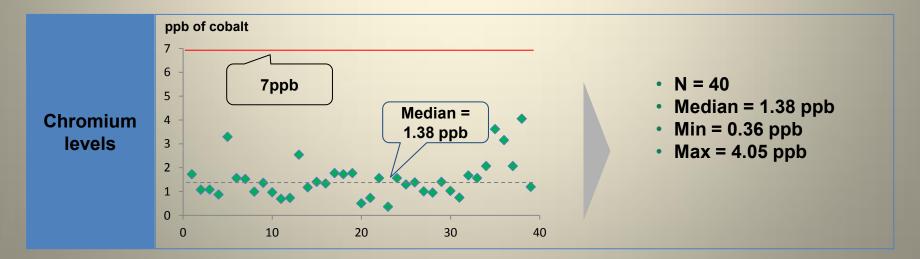
Material & Methods

• All had uncemented Allofit cup (Zimmer)

Cemented MS 30 stem (Zimmer) = 44

• Uncemented CLS stem (Zimmer) = 26





Results

	Indications for hip arthroplasty	Numbers
•	Osteoarthritis	48
•	Inflammatory arthritis	2
•	Dysplasia	4
•	Slipped upper femoral epiphysis	1
•	Perthes	1
•	Native hip infection (TB)	1
•	Hip fracture	1
•	Hip metastatic	1
•	Avascular necrosis	1

Distribution of blood metal ion levels

Metal artefact-suppressed MRI

• MRI indicated in only two patients

• Both reported as normal with decreasing subsequent blood metal ions.

No evidence of Adverse Reaction to Metal Debris on MRI

Complications

- Dislocations = 3
 - 2 stable after MUA
 - 1 revised and stable after extended neck femoral stem

Deep vein thrombosis (DVT) – 1

No infections

• No aseptic loosening

Implant Survival

• Implant survival with ARMD as end-point = 100%

• Implant survival with end-point revision for any-cause = 98.6%

Summary/Discussion

- Excellent results with Metasul 28mm bearing in our cohort
- Zero incidence of ARMD
- Metal ions levels within acceptable limits in all except for one patient
- Are routine blood metal ion level checks necessary?
- Is there still a role for MoM bearings in hip arthroplasty ?

ARMD incidence Metasul 28mm

- Hwang et al 2013
- Sugano et al 2014
- Lubbeke et al 2014
- •
- Lass et al 2014
- Innmann et al 2013
- Vendittoli et al 2013
- Halma et al 2013

- 2/195 at 18 years
- > 7/1535 at 10 years
- > 6/663 at 10 years
- > 0/52 at 18 years
- > 0/100 at 10 years
- > 0/100 at 9 years
- > 0/137 at 5 years

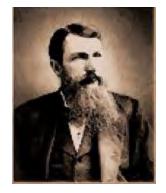
Taperosis – what is the problem? Patient evaluation

Jeremy Latham Orthopaedic Surgeon Southampton UK

Disclosures

Consultancies with:

- Biomet
- DePuy
- LIMA LTO
- Zimmer


Research team

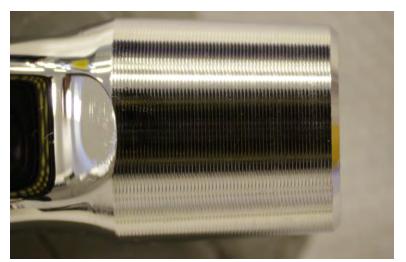
- Richard Cook (Research Fellow, nCATS)
- Ben Bolland (Orthopaedic surgeon)
- Sam Yasen (Orthopaedic registrar)
- Christian Maul (CEO Redlux)

Modularity

- Stephen Morse (1864) invented the twist drill
- Coupling device to join two rotating machine components
- Compressive axial load
- Intimate contact
- Ease of assembly/disassembly

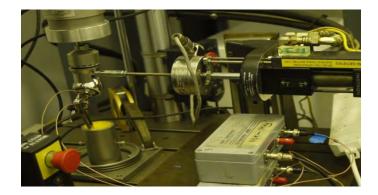
Orthopaedics and modularity

- Boutin (1971)
- Ceramic on ceramic
- High failure rate with adhesives/thread
- Mittelmeier (1974)
- Modular cups
- Modular necks
- Overcoming technical errors



Trunnion issues

- 12/14 not all the same
- Change in length
- Machining for ceramic heads – plastic deformation
- Stiffness
- Variability in manufacturing tolerances



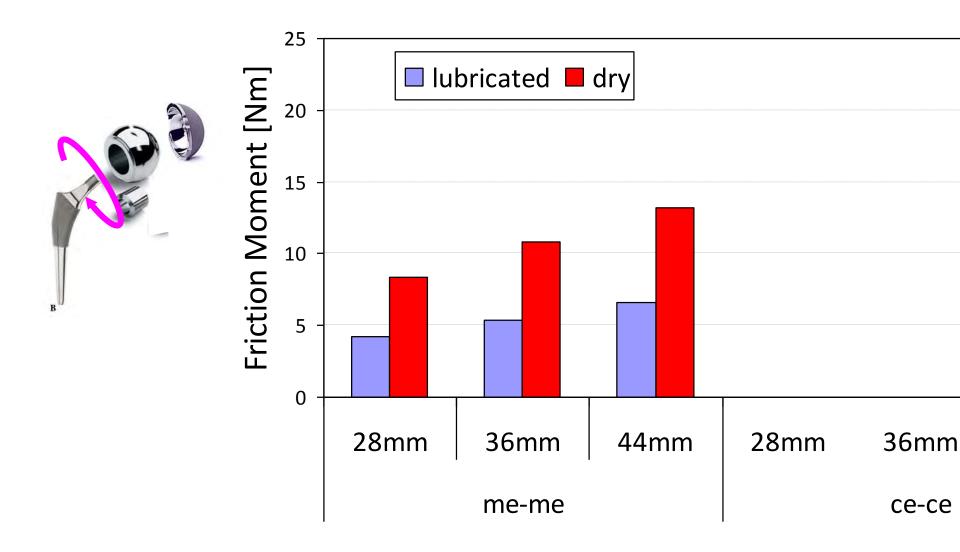
Taper/trunnion movement

- Frictional torque, load, offset, varus neck
- Assembly force
- Taper mismatch
- Micromotion axial and lateral

Yasen (2013), Bishop et al (2013)

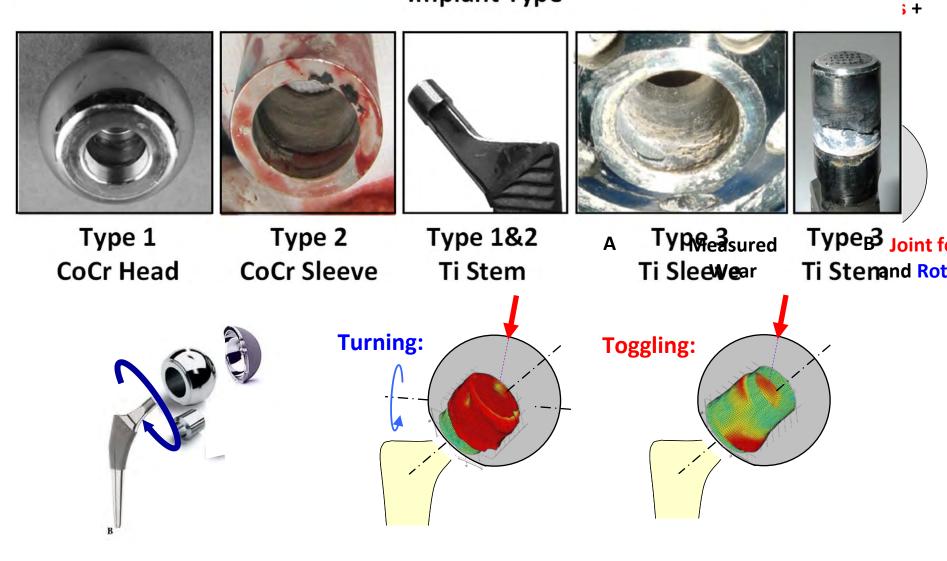
- Damage to surface layer of taper (fretting)
- Mechanically assisted crevice corrosion (MACC)

HIP


The effect of frictional torque and bending moment on corrosion at the taper interface AN IN VITRO STUDY

	A. Panagiotidou,	The aim of this study was to assess the effect		
	J. Meswania,	fretting corrosion at the taper interface of a modular femoral component and to investigate		
	K. Osman,	K. Osman, whether different combinations of material also had an effect. The combinations		
B. Bolland, examined were 1) cobalt-chromium (CoCr) heads on CoCr stems 2) CoCr he		eds on CoCr stems 2) CoCr heads on titanium		
	L Latham,	alloy (Ti) stems and 3) ceramic heads on CoCr	stems.	
	J. Skinner,	In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was		
	F. S. Haddad,			
	A. Hart,	equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm.		
	G. Blunn	In test 2 we investigated the effect of increa	sing the bending moment by offsetting the	
		application of axial load from the midline in th	he mediolateral plane. Increments of offset	
	From The Royal	equivalent to head + 0 mm, head + 7 mm and	head + 14 mm were used.	
	National	Significantly higher currents and amplitude	s were seen with increasing torque for all	
	Orthopaedic	combinations of material. However, Ti stems s	showed the highest corrosion currents.	
	Hospital, Stanmore,	Increased bending moments associated with	using larger offset heads produced more	
	United Kingdom	corrosion: Ti stems generally performed worse	e than CoCr stems. Using ceramic heads did	
	- I have the same to	not prevent corrosion, but reduced it significa	ntly in all loading configurations.	
	A. Schengertilden, 19235, 356, 1923, Orthograndis Specification Register 1973, Institute of Orthogeneing and Magazin dortant	Cite this article: Bone Joint J 2015;97-B:463-72	2.	
	Science - J. Monatoria, PhD, Reasonin Pallone, Institute of Colongeration and			
		Modular femoral components, comprising a	and high contact stresses have also been impli-	
	- C. Exns. Ma. NO. Pelhasis, Center for So. Medical Exploseing.	head and stem linked by a Morse taper, have	cated as potential mechanisms for the failure of the modular head-stem junction. ^{10,11} Poor	
	Institute of Critical as dise and	been used successfully in oethopsedic surgery		
	University Dollage Landon, Conser- Network, Landon WC18 497, UK	for more than 30 years. Modularity, as well as	lubrication of large femoral heads results in	
	- C. Carten, MINE, Mile, MICS, Onthigunal of Terrine, Martin (Martin)	reducing the inventory and thereby saving cost,	increased frictional forces, which can be trans-	
	Research been, Institute of Sport. Evening and Partit	allows the surgeon to use femoral heads of var-	mitted to the taper junction and increase the	
	University Collinse London Hospitals 1985 Poundation Dual, IOI Toberham	ious materials, diameter and offset to achieve	torque at the modular interface. Poor lubrica-	
	Caurt Reed, London WIT 25A, UK – B. Soland, MORS, MD, 1905	the best possible outcome.1 Despite the many	tion may also occur with edge loading and on initiation of movement. ^{12,13}	
	(BBC-9), Consultant Orthopsedia Rungerin, Tearly in and Summers (NPS)	peactical advantages of modular systems, there		
	Promobilion Trans Muniprice Test Election, Teactory,	is evidence that the modular interface may	Recent publications from the National Joint	
		increase fretting and crevice corrosion2-8	Registries of England & Wales, Sweden and	
	- J. Leibers, MA, MCS, PEDRIDHI'S Consultant Onlingeedix Surgers	The identification of macroscopic corrosion	Australia have reported the poor performance	
	University Read Indian Internation 1985 Provided on Trans. Torrest reading. Reading reads in 1972, UK.	on retrieved hip prostheses was first reported in	of large head MoM modular total hip arthro-	
	 J. Bisson, M.B.S., PICS (Eng). PICS (2+9), Consultant Onlogisation Surgering 	the early 1990s. The potential for the degrada- tion of metal-on-metal (MoM) hip replacements	plastics (LH-MoM-THAs), with failure rates exceeding those of hip resurfacings, which sug-	
	- A. Harr, MR. MERCHA PROVIDENT. Professor of Orthogonals Surgery.	arises from three processes: electrochemical dis-	gests that the head-stem interface may contrib-	
	Consultant Orderssedin Romanin Novel Reduced Orderssedie Accepted, Dealthy Hill, Sammon, Middlesse	solution, mechanical wear and a combination of	ute to the failure of these modular THAs.14 A	
		the two. Metallic alloys used in orthopaedics rely	number of retrieval studies have also focused	
	- F.E. Racided, Mile MD (Rev.) 1905 (1960-9), Andrease of Onterpreting	on a protective oxide layer (passivation), which	on the modular head-stem interface of LH-	
	Burgery University Dollage London Hospitals	forms spontaneously when the surface of the	MoM-THAs. ¹⁵⁻¹⁷ Corrosion at this interface	
	LE.	prosthesis reacts with oxygen. Removal of this	has been well described. The clinical effects of	
	Coversiondence should be sent to	peotective layer leads to the immediate onset of	the release of corrosion products from this	
	Ma.A. Pereplotide a small pereplotide of the source of	corrosion.45	interface include adverse local tissue reactions,	
	\$20.8 The Britshild Science of	Corrosion at the modular interface is usually	systemic toxicity, muscle atrophy, the develop-	
	Roce & Joint Surgery de 140 CECCTORS ACCE EXTRE James C2 CO	due to mechanical action (fretting corrosion),	ment of pseudotumours and osteolysis.18-20	
		localised attack in crevices or cracks (crevice	Cooper et al ²¹ have also reported local tissue	
	Bane Jaine J 2018/JOJ Bulle-102	corrosion) or between dissimilar metals (gal-	reactions secondary to metal debris as a result	
	Receivers 21 July 2016, Assessment eter- reviews fol Receiver 2014	vanic corrosion).9,00 Suboptimal taper design	of corrosion of the modular head-stem taper	

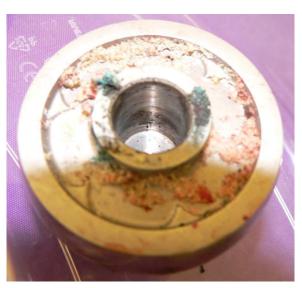
VOL 97-8, No. 4, AFRIL 2015


(3) Large Me-Me: Friction Moments ?

(2) Large Me-Me: Taper Wear

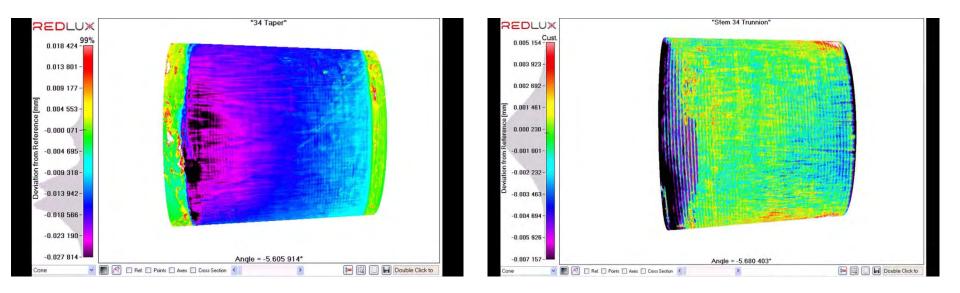
Implant Type

HIP


High failure rates with a large-diameter hybrid metal-on-metal total hip replacement

CLINICAL, RADIOLOGICAL AND RETRIEVAL ANALYSIS

B. J. R. F. BOLLAND, D. J. CULLIFORD, D. J. LANGTON, J. M. LATHAM JBJS BR VOL. 93-B, No. 5, MAY 2011 PAGES 608-615



Revision Rate 20% at 5yrs

Bad Damage

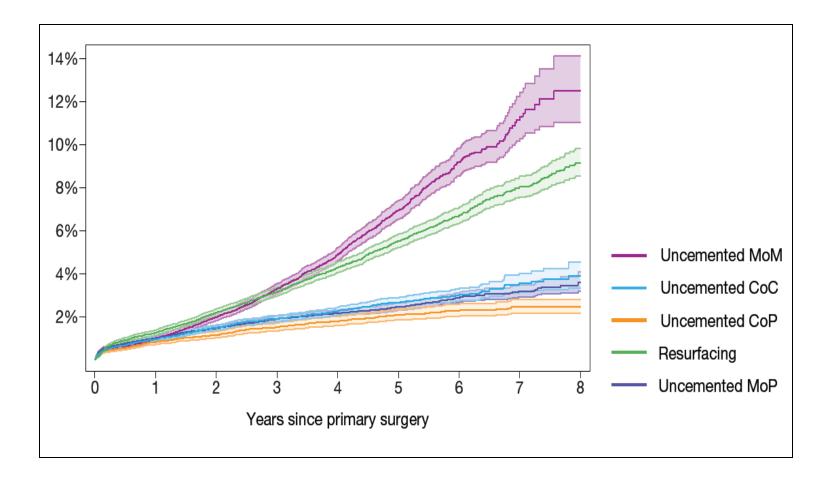
60 year old Female: 7 years 7 months in-vivo, 42 (+3.5) mm BHR on CPT stem Volume Loss: 7.996 mm³

Similar problems with metal on PE

- Two cases
- Accolade/Trident LFIT on X3 PE
- 40mm/44mm
- Time to failure 4y
- Presented with pain
- Pseudotumour

Stem corrosion with big head

- 19 CPT stems with LD heads
- Palacos cement
- Surface damage
- Opacifier (ZrO₂)
- Complex tribolayer in interface
- Another source of Co/Cr


Lots of devices.....

- <u>Langton et al (2011)</u>
 ASR XL 50% failure
 Metal ions lower in big diameter SR
- <u>Bosker et al (2012)</u>
 Biomet M2A; 39% PT
 40% Co>5µg/l
 Co>5µg/l = X4 revision risk
- <u>Garbuz et al (2009)</u>
 Zimmer Durom resurf vs THR
 Co X 10 higher @ 1y

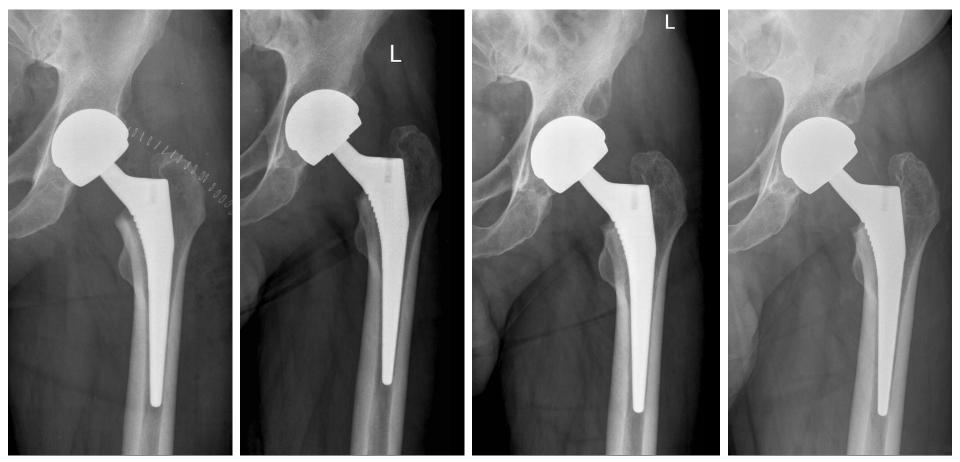
 <u>Malviya et al (2011)</u>
 S&N CPCS BHR modular vs MoP
 20% Co >7µg/l

Beaulé et al (2011) Wright Conserve+ vs Profemur LD THR Rising Co up to 2y

Revision risk NJR 2011

Typical clinical features

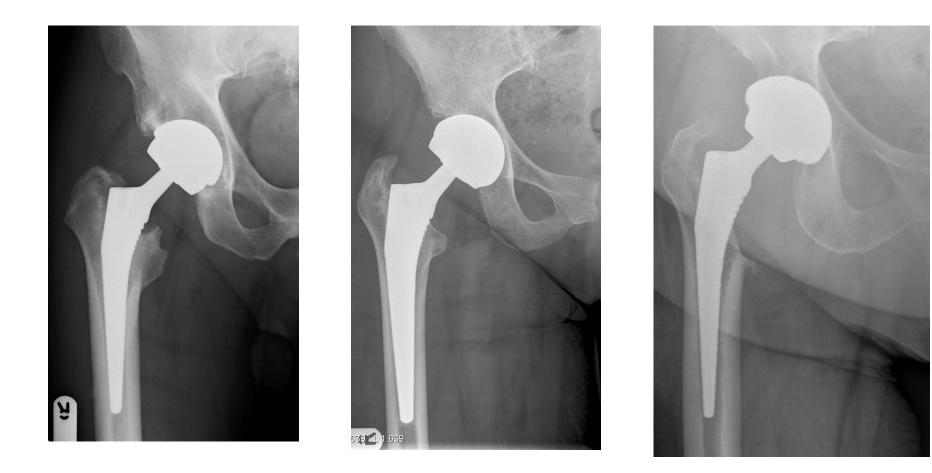
- Be aware of high risk implants!
- Important to ask about new symptoms
- Awareness of hip
- Gluteal discomfort
- Noise
- Rarely nerve pain
- Systemic effects eg cardiac, hearing, vision



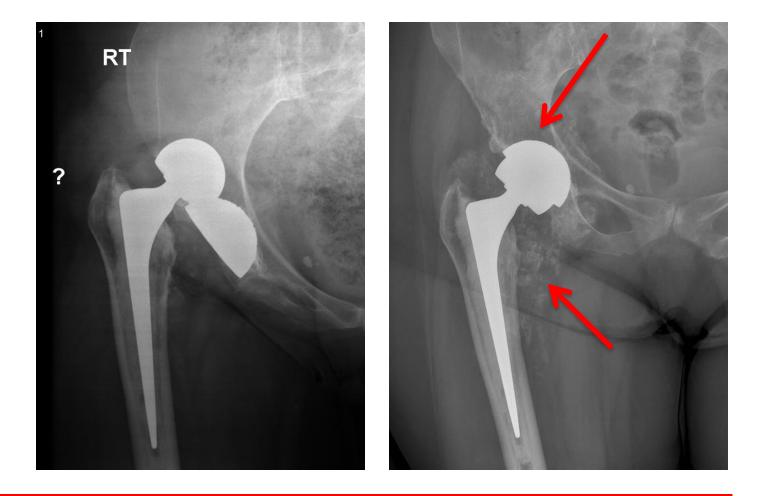
Clinical assessment vital

Pain / Swelling / Limp

Acetabular osteolysis

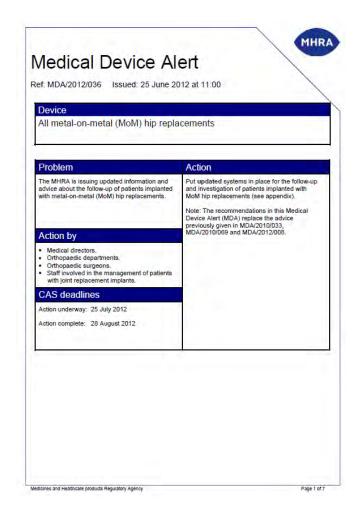

Jan 2006

Jan 2007



Jan 2010

Proximal femoral osteolysis


Dislocation in Large Diameter MoM Bearings

Adverse Reaction to Metal Debris until proven otherwise!

MHRA guidelines

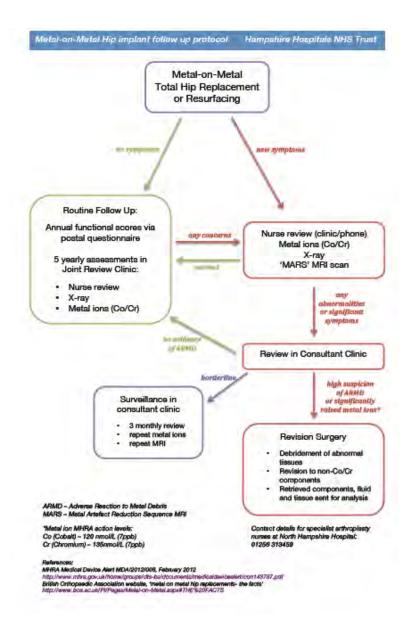
- 2012
- Guidance on all MoM hips
- Resurfacing/stemmed THR (36mm)
- Symptoms/MRI/bloods
- 7ppb Co/Cr
- Emphasizes dynamic nature of follow-up

Typical protocol for high risk implants

- Annual review for life of implant
- Assessment of symptoms
- Blood tests
- Imaging
- Revision for symptoms, rising metal ions, abnormal imaging

Action

Management recommendations for patients with stemmed MoM total hip replacements – femoral head diameter ≥36mm (extracted from the table within the MHRA's MDA/2012/036)


	Stemmed MoM total hip replacements – femoral head diameter ≥36mm	
	Symptomatic patients	Asymptomatic patients
Patient follow-up	Annually for the life of the implant	Annually for the life of the implant
Imaging: MARS MRI or ultrasound	Recommended in all cases	Recommended if blood metal ion levels rising
1 st blood metal ion level test	Yes	Yes
Results of 1 st blood metal ion level test	Blood metal ion level >7ppb indicates potential for soft tissue reaction	If blood metal ion level >7ppb then second blood test required 3 months later
2 nd blood metal ion level test	Yes - 3 months after 1 st blood test if result was >7ppb	Yes - 3 months after 1 st blood test if result was >7ppb
Results of 2 nd blood metal ion level test	Blood metal ion level >7ppb indicates potential for soft tissue reaction especially if greater than previously	If blood metal ion levels rising - further investigation required including imaging
Consider need for revision	If imaging is abnormal and/or blood metal ion levels rising	If imaging is abnormal and/or blood metal ion levels rising

Common sense

- 'Risk assessment'
- Annual clinical and radiological review
- Annual metal ions
- MRI if symptoms, high or rising ions, high risk implant (brand, cup position)

- Most of the bad hips have failed already
- Host factors not understood
- We don't yet know the 'end game'
- Better to be safe than sorry.....

What next?

- Screen patients for hypersensitivity pre-op?
- Improve surgical techniques
- Better control of new technology
- Stop using CoCr in joint replacements?

Thanks!

INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA 26-27 NOVEMBER 2015 MILAN, ITALY

"Taperosis": Insights for Clinical Practice from Histological Analysis Giorgio Perino, M.D. Hospital for Special Surgery, NY, NY

HSS educational activities are carried out in a manner that serves the educational component of our Mission.As faculty we are committed to providing transparency in any relevant external relationships prior to giving an academic presentation.

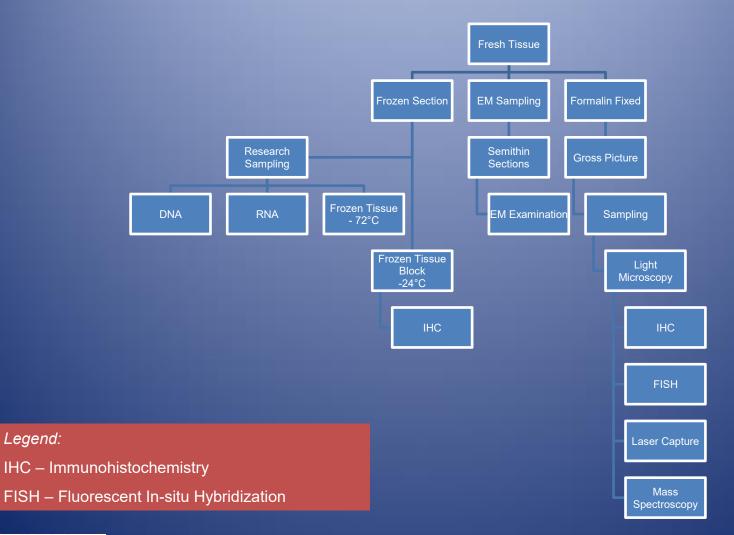
Giorgio Perino, MD

Disclosure:

I **do not** have a relevant financial relationship and **will not** be discussing products/services of commercial interest

Disclaimer

All implants and systems shown in this presentation are used only as examples of different designs with adverse reactions, without implications regarding their overall performance or specific cause of failure


Acknowledgements

- Radiology Pictures Courtesy of:
 - Hollis Potter, MD, Radiologist-in-Chief
- Technical Assistance for Histology Preparations:
 - Irina Shuleshko
 - Yana Bronfman
- Technical Assistance for the Presentation:
 - Philip Rusli

Periprosthetic Tissue Sampling HSS Dpt. of Pathology Protocol

- Collection of fresh tissue on ice in the OR with MRI guidance for areas of inflammation when available
- Soft tissue samples from multiple areas including pseudocapsule, neo-synovium, bursal synovium, and adjacent skeletal muscle labeled accordingly
- Bone sampling from acetabulum and/or femur, core biopsies of osteolytic areas, reamings
- Extensive sampling performed at macroscopic examination

Pathological Examination of Revision Specimen

Pathology Report

FINAL External Consult Report for

......

The Hospital for Special Surgery Department of Orthopedic Pathology

535 East 70th Street New York, NY 10021

Street 10021

PATHOLOGY CONSULTATION REPORT

Patient Name:

Date of Birth: 07 30 1940 Gender: M Age: 71 Location: 8EN 807 1 Medical Record #: Account Number: Accession Date: 03 23 2012 Operative Date: 03 23 2012

Case Number: \$2012-0044

Michael J. Klein, M.D. Director

Phone: 212-808-1259

Pathologist: PERINO M.D., GIORGIO Report Onte: 04 02 2012 Report Time: 09.31

Physicians

Clinical Information

PRE-OPERATIVE DIAGNOSIS: Failed Right Total Hip Replacement, H/O right THR in 09/2007, Multiple MRI performed al HSS with progression of synovial reaction since 07/2010 with difficulty in waiking OPERATION PERFORMED: Revision, Right Total Hip Replacement POST-OPERATIVE DIAGNOSIS: Same as pro-operative diagnosis.

Final Anatomic Diagnosis

- 1. JOINT, HIP, IMPLANT INTERFACE, RIGHT
- Inflammatory Implant Reaction Soft Tissue, Consistent with Immunologic Reaction (see case comment)
- 2 JOINT, HIP, IMPLANT INTERFACE, RIGHT
- Macrophagic Reaction to Particulate Implant Material Bone Marrow: -- Metallic Particulate Debris. No Evidence of Infection
- 3 BONE, PELVIS, ACETABULUM, RIGHT
- Macrophagic Reaction to Particulate Implant Material Cancellous Bone: -- Metallic Particulate Debris. No Evidence of Infection
- 4. JOINT, HIP, RIGHT
- Inflammatory Implant Reaction Soft Tissue, Consistent with Immunologic Reaction

Comment on Case

The histological findings are considered with an immunologically mediated reaction to implant debris inscreptings reaction is particles of correspon products and metallic perificulate debris. The ALVAL score, according to the classification system proposed by Campbell et al (2010) Clin Orthop Rolat Ros 488: 2321-2327, is 8/10 (synoxial lining. 3: inflaminatory infilmite, 3; insure organization, 2/

Gross Anatomic Description

- 1. Specimen Laber: Paeudotumor
- in formalin. The specimen consists of a portion of foromenoranous tissue covered by a thin green area of frisble material measuring approximately 3 x 2 x 0.5 cm in greatest dimension. The entire specimen is submitted.
- 2. Specimen Label: Cyst membrane, left hip
- in formalin. The specimen consists of a portion of red green soft tissue measuring approximately 1 x 1 x 0.5 cm in greatest dimension. The entire specimen is submitted.
- 3. Specimen Label: Bone cyst
- In formalin: The specimen consists of fragments of bony tissue measuring appropriately 0.3 x 0.2 x 0.2 cm in appreciate dimension. The entire specimen is submitted.
- 4. Specimen Label: Right hip removed hardware
 - in formatin. The specimen consists of multiple fragments of thick foromenorances taske with focal greenish pigmentation 1 of 2 on 04-03-2012 at 12:31 Duplicate copy

PATHOLOGY REPORT

FINAL External Consult Report for

. . . .

Gross Anatomic Description(continued)

measuring approximately 3.5 x 1.5 x 0.8 cm in greatest dimension. Also present is a Smith & Nephew metallic cup measuring approximately 52 mm in diameter and a metallic femoral head with inserted circulo-trapezoidal metallic sleeve measuring 46 mm in diameter and weighing approximately 229 grams. The entire specimen is submitted. The hardware is submitted to Biomechanics. (GP/wi)

Material Submitted

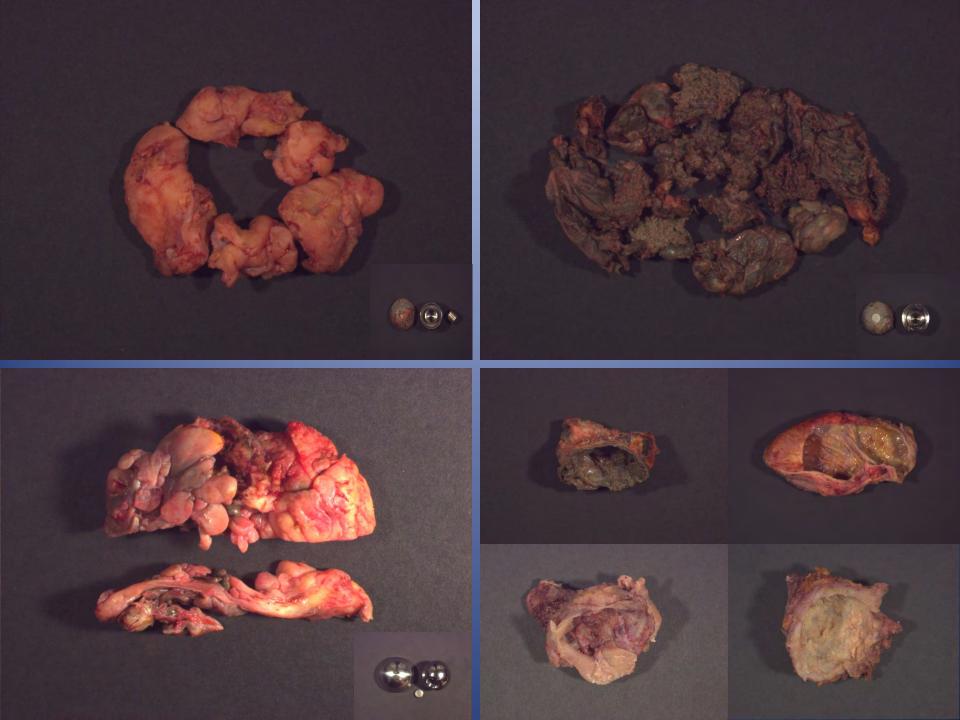
	Code Description	Code	Type Description	Туре	Count
1,	Undesignated	U	Soft Tissue, Routine	STR	1
2.	Undesignated	U	Soft Tissue, Routine	STR	1
3.	Undesignated	U	Soft Tissue, Routine	STR	1
4.	Undesignated	U	Soft Tissue, Routine	STR	7

Microscopic Description

 The section is of fragments of synovium showing loss of superficial layer replaced by adherent fibrinous exudate and necrotic macrophages, dense sclerosis with clusters of macrophages loaded with particles of corrosion products and metallic particulate debris (2+, discrete granules resolved x100), and moderate band-like and perivascular lymphocytic infitrate. The inflammatory infiltrate susually associated with infection are not identified.

- The section is of fragments of largely necrotic tissue, with macrophage infiltrate loaded with particles of corrosion products and metallic particulate debris (see part 1). The inflammatory infiltrates usually associated with infection are not identified.
- The section is of fragments of sciencitic cancellous bone containing large clusters of macrophages loaded with particles of corrosion products and metallic debris. The inflammatory infiltrates usually associated with infection are not identified.
- 4. The section is of fragments of synovium and bone marrow. The fragments of synovium show diffuse loss of lining with large amount of necrotic macrophages admixed to adherent fibrinous exudate and focal necrosis of the underlying superficial layer with deep, macrophagic infiltrate loaded with corrosion particles and metallic debris (2+) with occasional giant cells, and marked perivascular and band-like lymphocytic infiltrate with occasional plasma cells. The bone marrow shows hematopoietic marrow within normal limits and several small and large clusters of macrophages loaded with particles of corrosion products and metallic particulate debris, without eldebris, without degregate of large pale yellow corrosion products is also identified. A section of pale yellow material accumulated in the metallic femoral head shows necrolic macrophages and numerous particles of corrosion products and metallic particulate debris, without cells of corrosion products and metallic particulate debris, section of pale yellow material accumulated in the metallic femoral head shows necrolic macrophages and numerous particles of corrosion products and metallic particulate debris.

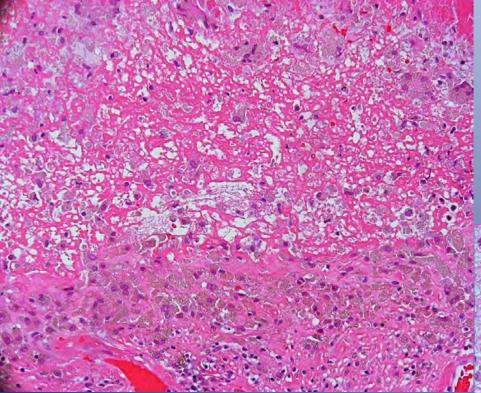
2 of 2 on 04-03-2012 at 12:31

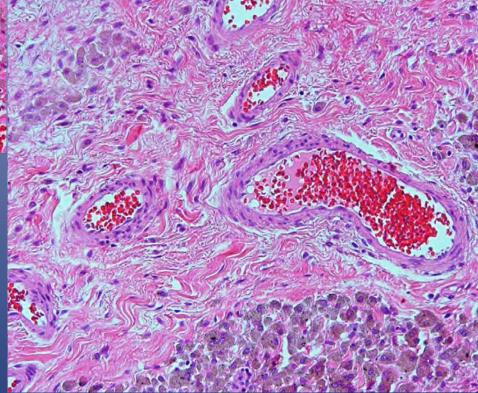

PATHOLOGY REPORT

Definition of Pseudotumor

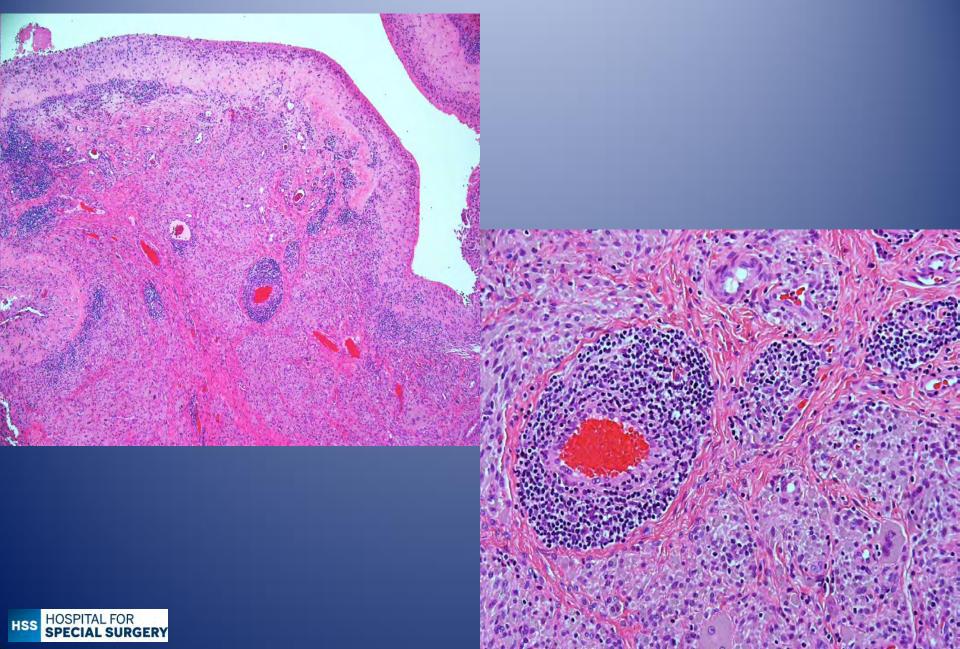
• The pseudotumor is a mass of variable size formed by the thickening of the joint pseudocapsule and neo-synovial membrane with frequent papillary or polypoid configuration with an absence or presence of a layer of necrosis/infarction of variable thickness filled with a variable amount of synovial fluid ranging from liquid to creamy

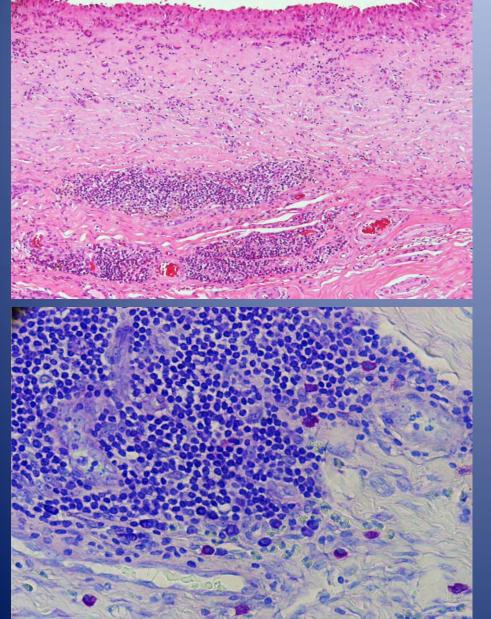
Terminology for adverse reaction to implant metallic wear debris

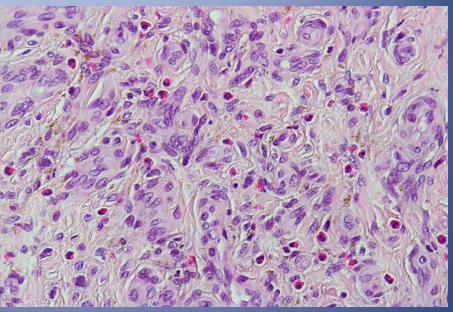

- ALVAL (aseptic lymphocytic vasculitis associated lesion)
- ALTR (adverse local tissue reaction)
- ARMD (adverse reaction to metallic debris)
- "Metallosis" should be erased from the medical literature because it is not a disease

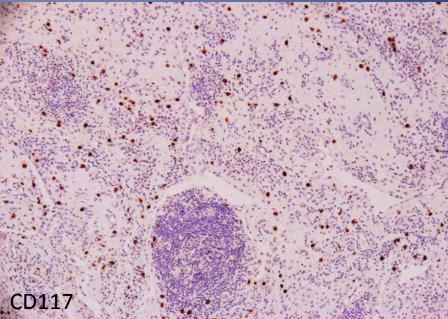

Classification of Histological Patterns of Adverse Reactions to Corrosion Products

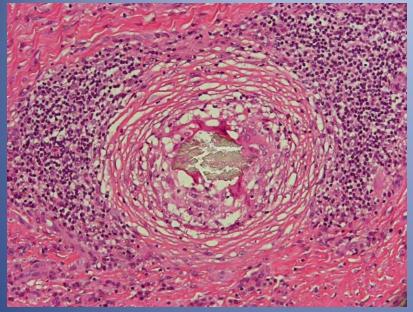
- 1. Pattern 1: purely macrophagic containing particles of corrosion products +/- conventional metallic particles with occasional lymphocytes
- Pattern 2: mixed macrophagic and lymphocytic: a. with stratification of superficial necrosis, deep-seated band of mixed macrophagic/lymphocytic infiltrate and perivascular lymphocytic infiltrate; b. presence of perivascular germinal centers +/- plasma cells; c. presence of large number of mast cells and eosinophils
- 3. Pattern 3: predominantly granulomatous composed of epithelioid macrophages and giant cells around large particle aggregates of corrosion products with lymphocytic cuffing +/- perivascular lymphocytic infiltrate of variable intensity
- 4. Any pattern with superimposed acute infection
- 5. Any pattern with bone marrow involvement by particle loaded macrophages +/- formation of reactive lymphocytic aggregates

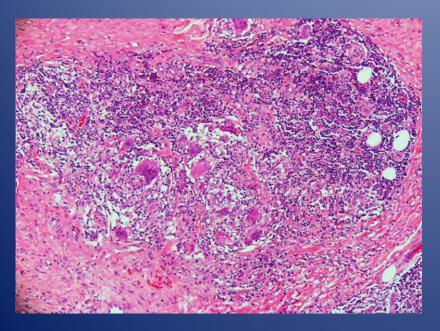

Pattern 1 Macrophagic

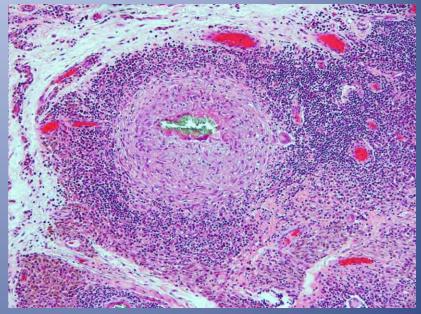


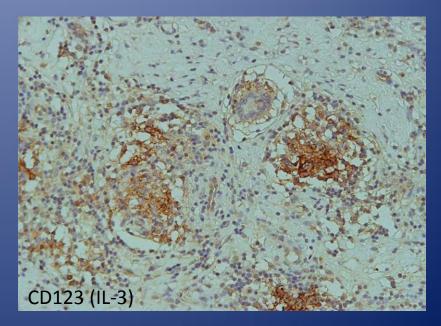



Pattern 2: Macrophagic/Lymphocytic

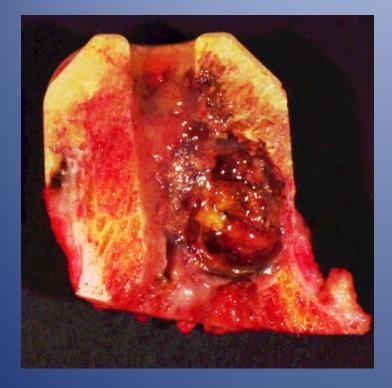

Pattern 2: Macrophagic/Lymphocytic

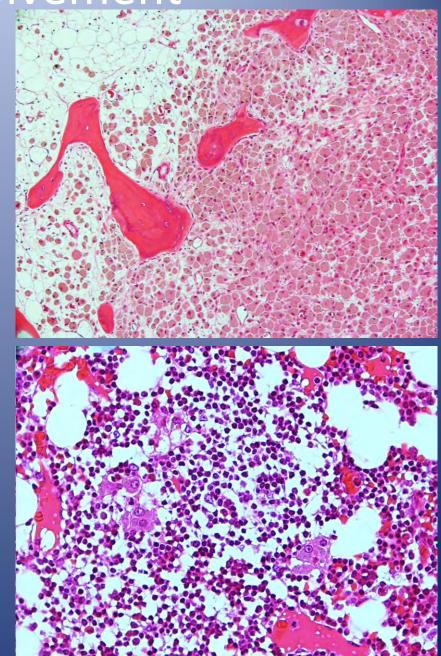




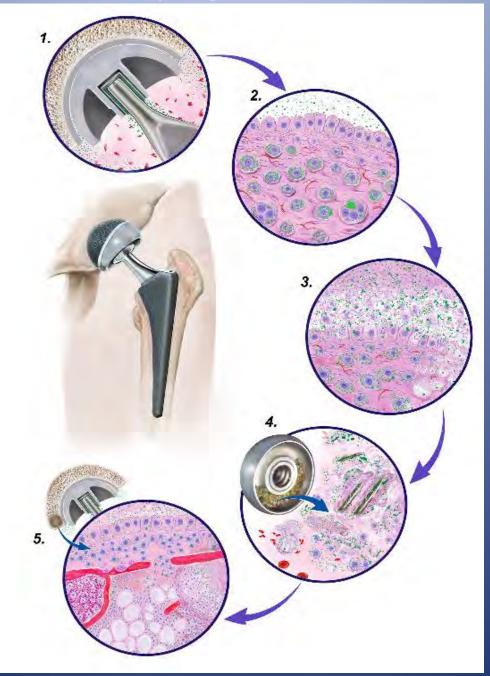


Pattern3: Granulomatous





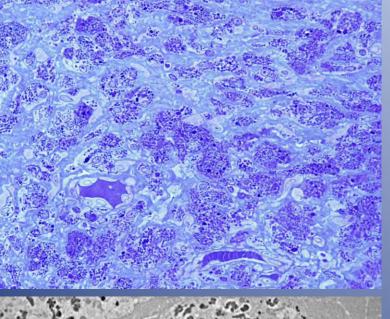
Bone Involvement

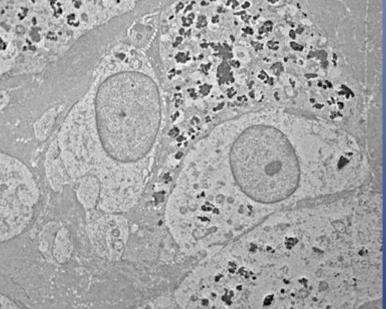


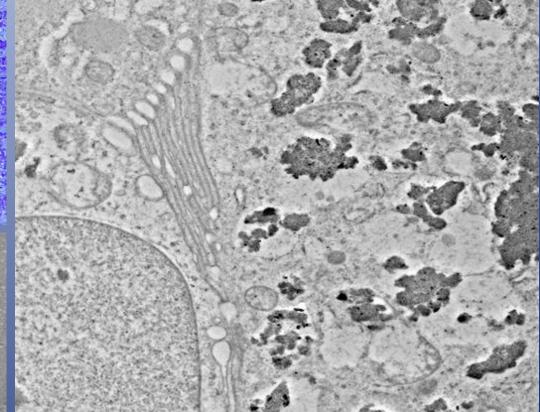
Cellular Mechanisms of Failure

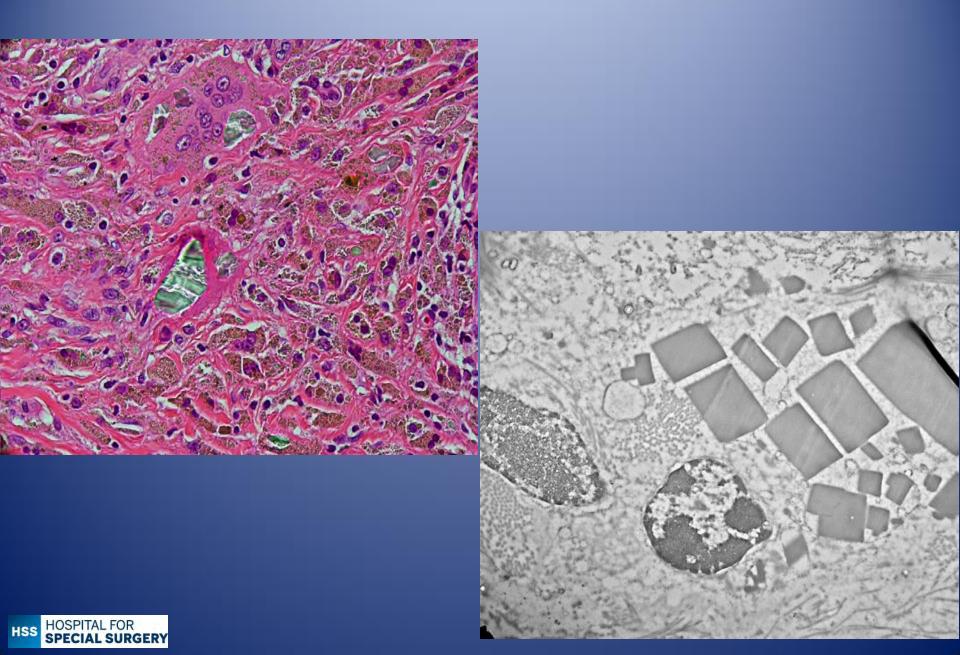
- Immunological: Macrophages, Lymphocytes, Plasma Cells, Mast Cells, Eosinophils
- Macrophagic: Tribology Modifications and Osteolysis

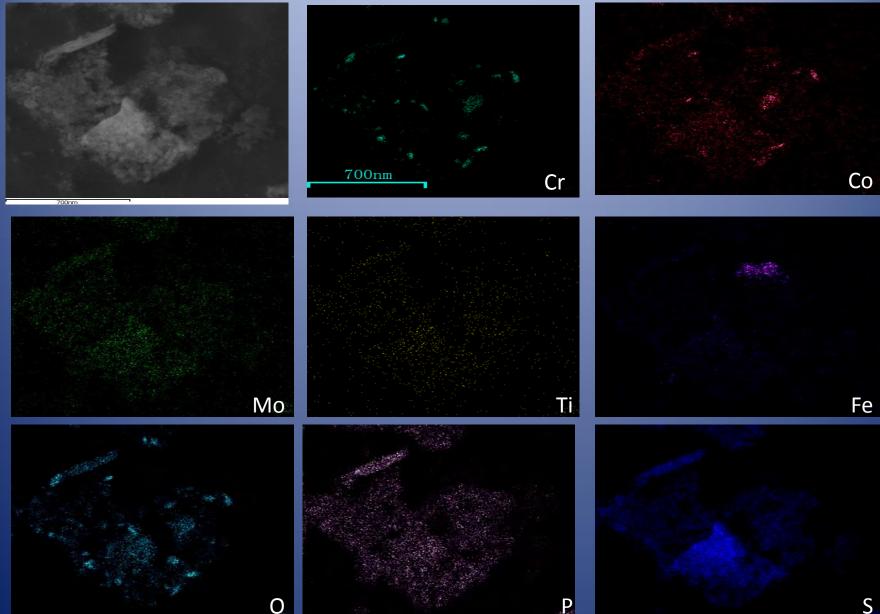
Macrophagic Mechanism


Electron Microscopy and Particle Analysis


Zhidao Xia, PhD, Center for Nanohealth, Swansea University, Swansea, UK


- Transmission EM (TEM)
- Scanning EM (SEM)
- Back-scattered electron detector (BSE) and energy dispersive spectroscopy (EDS)
- TEM-EDS mapping
- X-ray Diffraction Spectrometry (XDS)


MoM THA w MAS



MoM THA with MAS

Particle Element Analysis

Corrosion of orthopaedic implants remains a serious clinical concern. Even though the freely corroding implant materials used in the past have been replaced with modern corrosion-resistant superalloys, deleterious corrosion processes have been observed in certain clinical settings. There is reason to believe that attention to variables related to metallurgical processing, tolerances of modular connections, surface-processing modalities, and appropriate selection of materials can decrease the rate of corrosion and minimize the potential for adverse clinical outcomes.

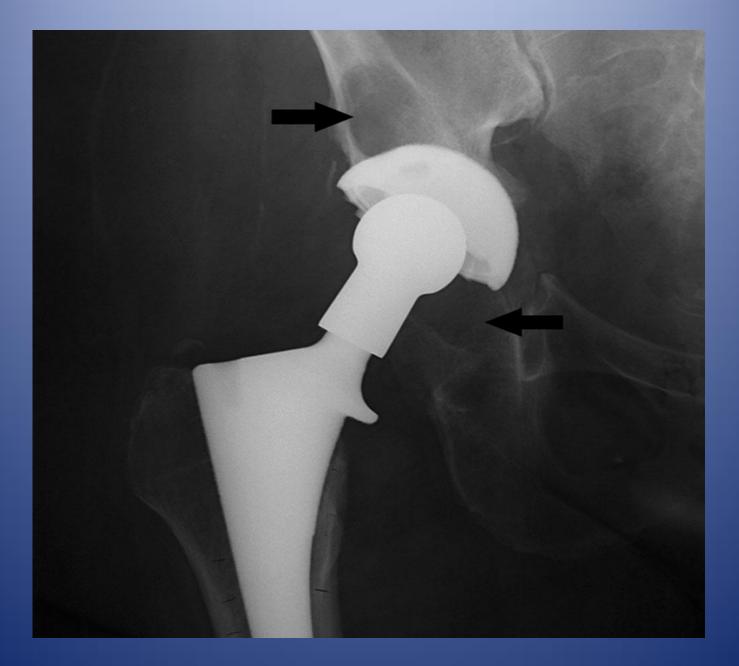
Jacobs JJ, Gilbert JL, Urban RM. Corrosion of metal orthopaedic implants. J Bone Joint Surg Am. 1998;80(2):268-82.

MoP Bearing Surface Skirted Metallic Head

Review Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies

Yousef Abu-Amer¹, Isra Darwech² and John C Clohisy²

¹Department of Orthopaedic Surgery and Department of Cell Biology & Physiology, Washington University School of Medicine, Barnes Hospital Plaza, Saint Louis, Missouri 63110, USA ²Department of Orthopaedic Surgery, Washington University School of Medicine, Barnes Hospital Plaza, Saint Louis, Missouri 63110, USA

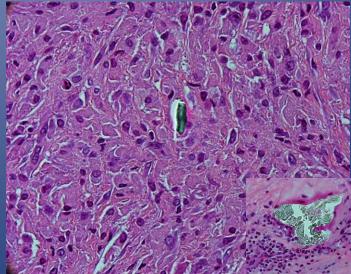

Corresponding author: Yousef Abu-Amer, abuamery@wudosis.wustl.edu

Published: 29 June 2007 This article is online at http://arthritis-research.com/content/9/S1/S6 © 2007 BioMed Central Ltd Arthritis Research & Therapy 2007, 9(Suppl 1):S6 (doi:10.1186/ar2170)

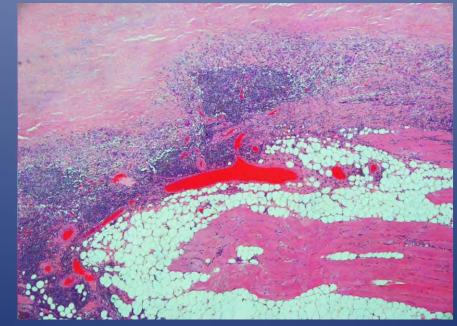
The Journal of Arthroplasty Vol. 28 No. 2 2013

Acetabular Alignment and Primary Arc of Motion for Minus, Skirtless, and Skirted 28-, 32-, 36-, and 40-mm Femoral Heads

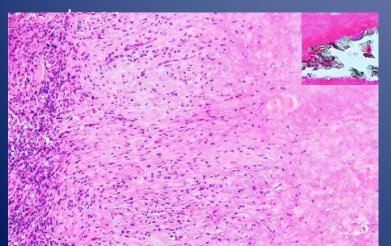
Yona Kosashvili, MD, MHA, Daniel Omoto, MD, David Backstein, MD, MEd, FRCSC, Oleg Safir, MD, FRCSC, Dror Lakstein, MD, and Allan E. Gross, MD, FRCSC



Implanted 08/96; Revised 09/13

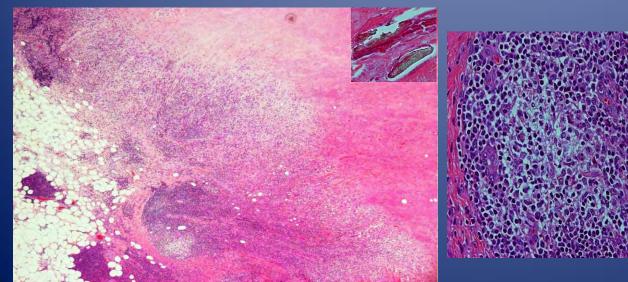


Implanted 12/07; Revised 03/13


40 mm metallic head 246.5 g

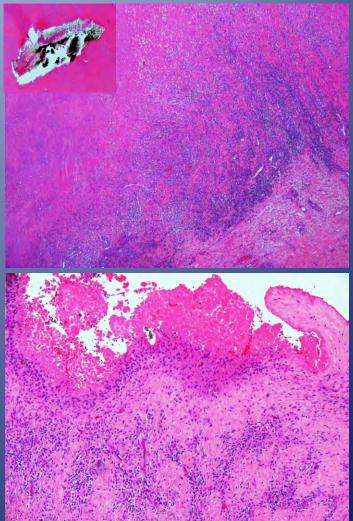
Implanted 12/10; Revised 04/12

32 mm metallic head, threaded neck



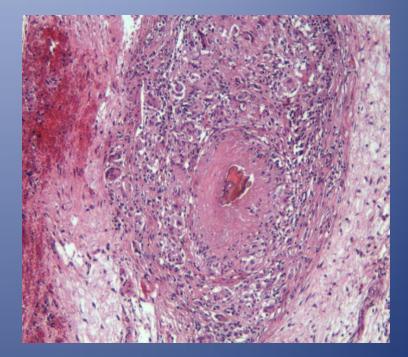
Implanted 10/09; Revised 04/12

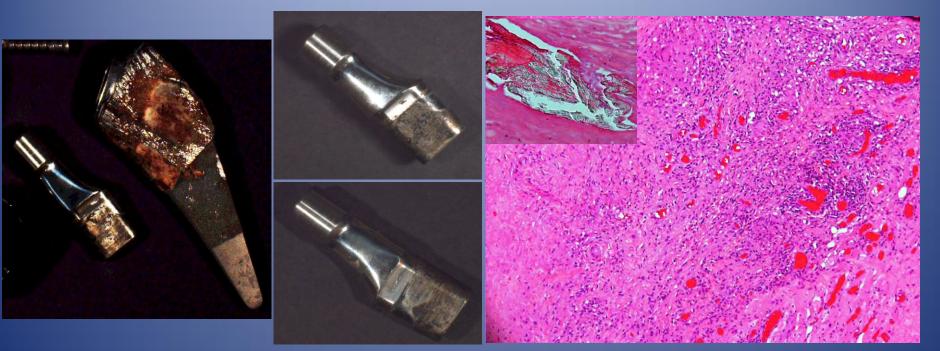
36 mm metallic head



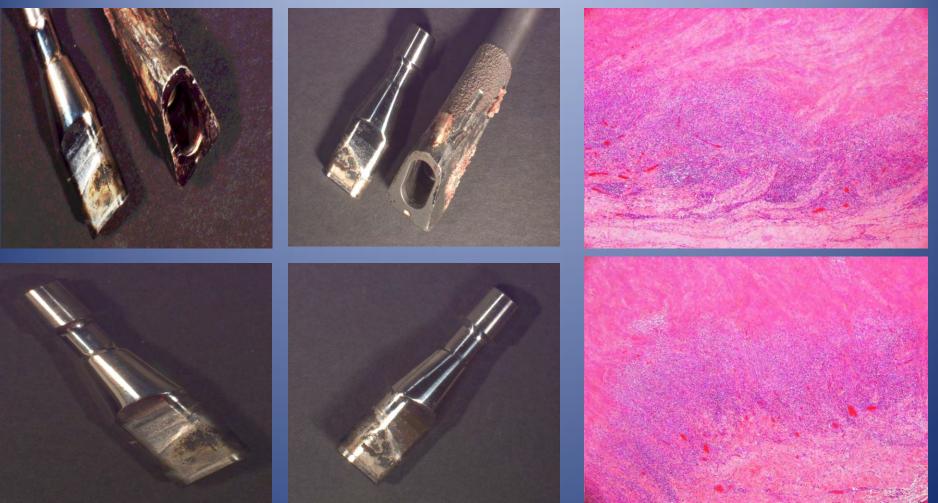
Non-MoM Bearing Surface Dual Modular Neck

Implanted 03/04; First revision 03/10; Second revision 04/12; Third revision 08/12


Smith and Nephew Redapt with CoCr Dual Modular Neck


Implanted 09/07; 01/10 First hip Dislocation; 03/10 Second hip Dislocation; First Revision 05/10 ; Second Revision 09/11

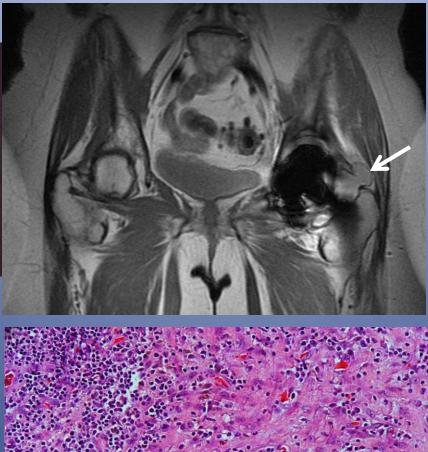
AG Braun Aesculap Metha Short Hip Stem System with Dual Modular Neck of Isodur cobalt-chromium forged alloy (CoCr29Mo)



Implanted 07/10; Revised 07/13

Smith and Nephew SMF with CoCr Dual Modular Neck

Implanted and Revised: Rt 06/11 and 09/13; Lt 10/11 and 05/13



Stryker Rejuvenate with CoCr Dual Modular neck

Implanted 03/10; MRI 06/11

Wright Medical Technology Pro femur **Z #2 stem; 54 mm** spiked THF cup; 48 mm head; Ti dual modular neck

Mistakes Have Consequences

Modular Taper Junction Corrosion and Failure: How to Approach a Recalled Total Hip Arthroplasty Implant

Robert Pivec, MD^a, R. Michael Meneghini, MD^b, William J. Hozack, MD^c, Geoffrey H. Westrich, MD^d, Michael A. Mont, MD^a

^a Center for Joint Preservation and Replacement, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland

^b Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana

^c Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania

^d Department of Orthopaedic Surgery, Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, New York

Case series

- 215 ABGII modular stems in 202 patients (03/09-06/11) 50 patients (30.1%) with symptoms consistent with ALTR, 15 revised and 5 awaiting revision
- 216 Rejuvenate stems, 199 modular 03/09-06/11, 67 patients (33.7%) revised for ALTR

Conclusions

- Histological examination provides a more precise diagnosis and it is clinically relevant
- Histological examination identifies sentinel cases of ALTR providing useful information for implant class and/or specific implant surveillance
- Histological diagnosis should be part of implant registries as it is of tumor registries with modalities to be determined by consensus of a multidisciplinary expert panel
- Histological analysis is the first step in the identification of particle related implant failure and should be integrated by molecular characterization and particle analysis for the identification of clinically relevant biomarkers for patient's risk stratification.

Taperosis : Treatment & Outcomes

Stephen A Jones

Bwrdd Iechyd Prifysgol Caerdydd a'r Fro Cardiff and Vale University Health Board

BHS/SIDA Congress Milan – 2015

Disclosures

- Institution
 - Funding received Depuy, Zimmer Biomet & Lima
- Individual
 - Consultant agreements
 - Zimmer Biomet, Smith & Nephew, Depuy & Lima
 - Design agreements & Royalties
 - Smith & Nephew, Lima & Adler Orthopaedics

Taperosis : Treatment & Outcomes

Modern Assessment – Methodology of Analysis & Planning

What are the clinical, biological and mechanical problems that characterize failure?

Initial Approach to Patient

Uniform to all Bearing Surfaces

- Extrinsic to the hip
 - Spine / Vascular Disease / Malignancy
- Intrinsic to the hip
 - Intra-capsular Infection / Loosening
 - Extra-capsular Bursitis / Tendonitis

ARMD varied clinical presentation / Dual pathology !

Patient Assessment

Symptomatic vs Asymptomatic

- Pain / Swelling / Limp
- Change in symptoms
- Decrease in function
- Especially very active
- Ceiling effect of Hip scores a limitation

Radiology

- X-Ray / MARS MRI / USS
- Metal ion levels

Benefits of MARS MRI **" the route map to revision"** John Skinner Sept 2014

- Unlike Not operator dependent
- Can be reviewed by surgeon & shown to patient
- Very reproducible images for F/U & comparison
 - Extent of ARMD especially anterior extension
 - Relationship to neurovascular structures

Revision Strategy – Key Principals

- Avoid all Cobalt/Chromium in revision implant
- Minimize Modularity & Material Conflict
- Highly Porous In-growth Surface
- Liner options largest head size possible
- Bearing COC or COP
- Constrained option on stand-by
- Taper Assessment Occurs AFTER head removed

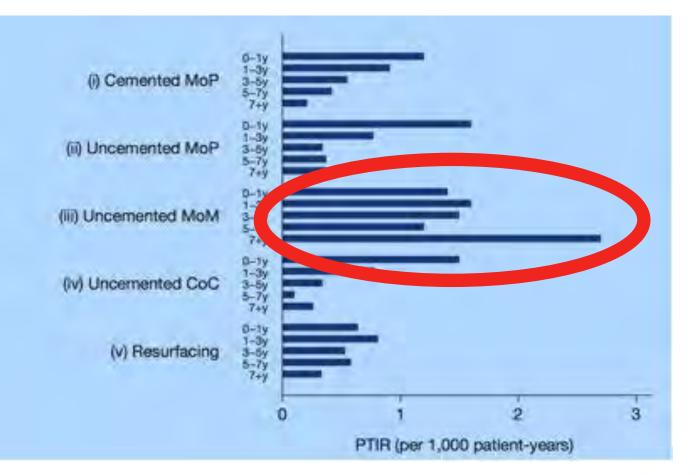
Component Revision vs Modular Exchange

"the perfect storm"

- Small Component Size
- Sub-optimal component position
- Revision after neck fracture (2nd bearing run-in phase)
- Modular neck LDMoM
- Off label (Zimmer stem with S&N head)

Indications for Stem Revision

- Infection
- Adverse stem radiographic features
- Modular neck components
- Component mal-position
- Unacceptable Taper damage


Indications for Stem Revision

Infection

- Adverse stem radiographic features
- Modular neck components
- Component mal-position
- Unacceptable Taper damage

NJR 11th Annual report 2014

GIG

HS

Dual Pathology ARMD +/- Infection

Challenges in Diagnosis of Infection

- Premature failure
- May have been unhappy from outset
- Non-specific symptoms
- Effect inflammatory markers
- Effect of definitive diagnosis on medico-legal aspects

Aspiration - Mandatory

Aspiration

Synovial WBC Count >3,000 cells per μL Synovial PMN % > 80% Microbiological assessment

Failed MoM or Corrosion Reaction

- Monocytes with phagocytosed metal particles may be read as PMN's by automated machines.
- May result in marked variability and lead to false +ve result.

Manual Cell Counts in these patients

Utility of synovial fluid aspirations in failed metal-on-metal total hip arthroplasty. Wyles C, Larson D, Houdek M, Sierra R, Trousdale R J Arthroplasty 2013;28(5):818-823

Infection - Challenge of diagnosis in ARMD

"the diagnosis of PJI is extremely difficult in patients with MoM bearings or corrosion"

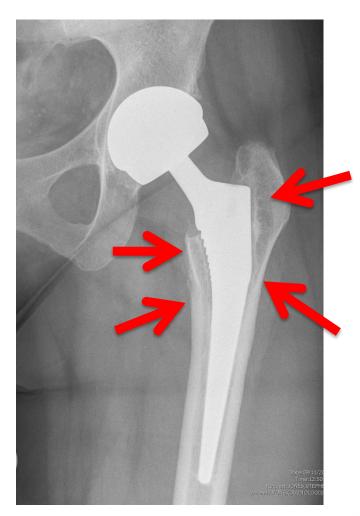
"A more aggressive approach to pre-operative evaluation for PJI is recommended in these patients"

Do Serologic and Synovial Tests Help Diagnose Infection in Revision Hip Arthroplasty With Metal-on-metal Bearings or Corrosion? Clin Orthop Relat Res (2015) 473:498–505 Craig J. Della Valle & Co-workers

Indications for Stem Revision

- Infection
- Adverse stem radiographic features
- Modular neck component
- Component mal-position
- Unacceptable Taper damage

Radiographic Changes Associated with Failed Metal-on-Metal THA


S A Jones, A Dramis, A John British Hip Society 2014

- Consecutive cohort 304 cases had undergone revision surgery ARMD
- Inclusion criteria produced a study cohort 267 cases and in
 - Total **49%** (131/267) had adverse plain film radiographic changes.
 - Majority occurred in femur only (39%)
 - 10% demonstrating socket abnormalities
 - 9% both.

Adverse Stem Radiographic Features

• When only distal fixation remains

• Often not overtly loose at time of surgery

Risk of stem Fracture

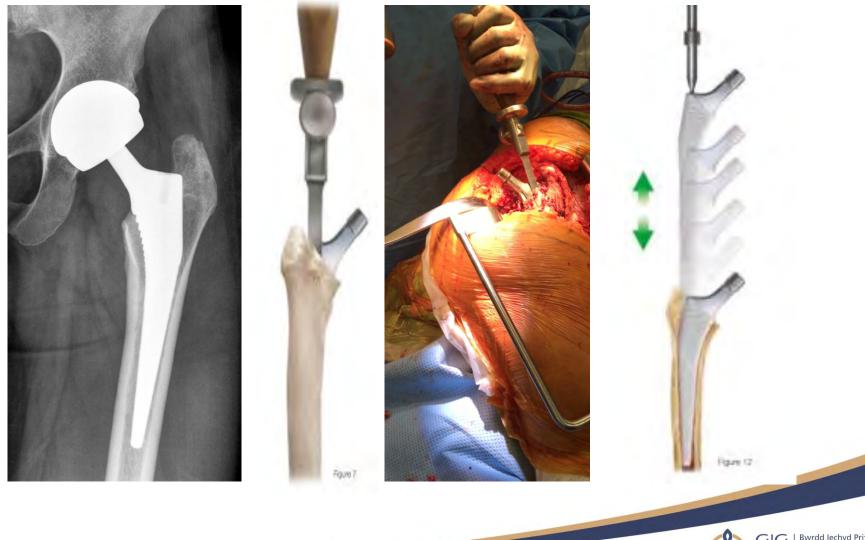
Loss of Proximal Fixation +/-support Cantilever Failure Stem Fracture

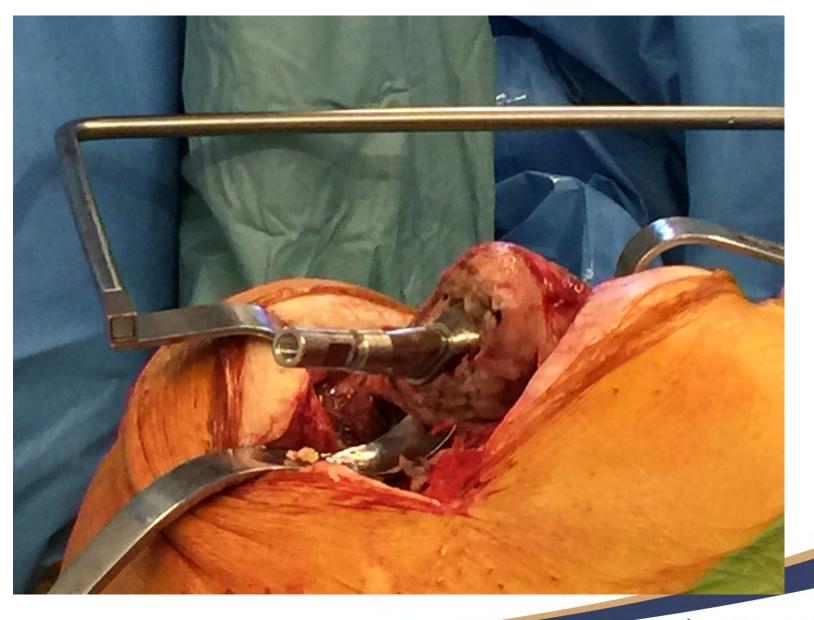
Modular Neck Stems – Adverse Features

Indications for Stem Revision

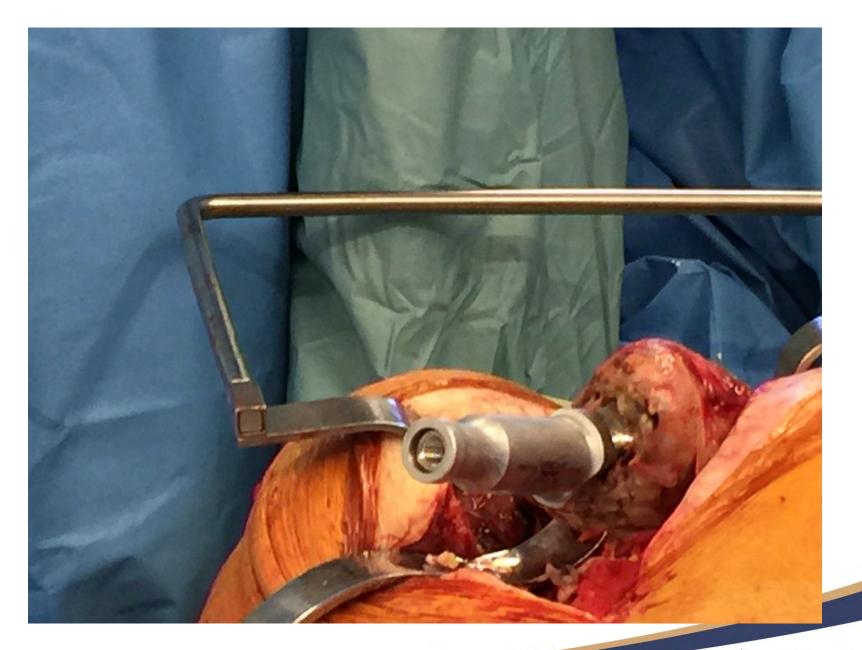
- Infection
- Adverse stem radiographic features
- Modular neck components
- Component mal-position
- Unacceptable Taper damage

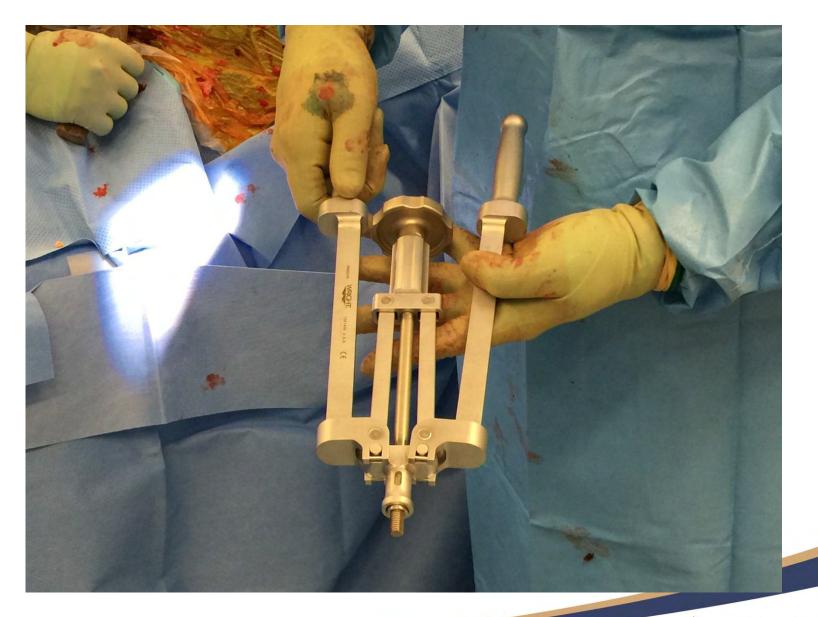
Modular Neck Stems

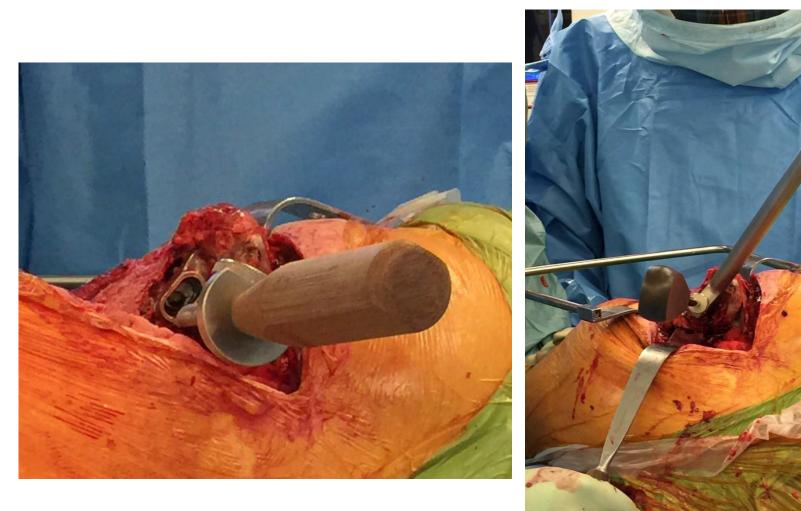

July 2012 – Stryker Product Recall


ABG II Modular & Rejuvenate

Implant Removal instruments



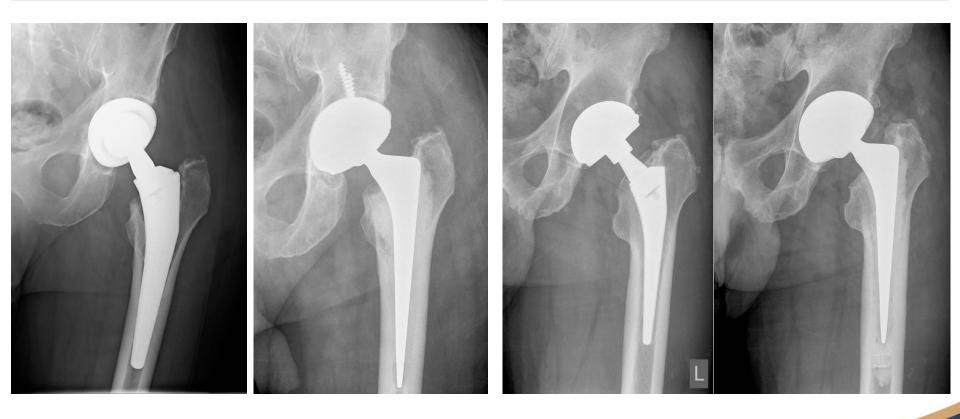




 GIG CYMRU
 Bwrdd lechyd Prifysgol Caerdydd a'r Fro

 NHS WALES
 Cardiff and Vale

 University Health Board



Proximal Fixation Stem

Fully Coated Stem

Indications for Stem Revision

- Infection
- Adverse stem radiographic features
- Modular neck components
- Component mal-position
- Unacceptable Taper damage

Results of Socket Only Revision or Modular Bearing Exchange

- 69 Isolated Acetabular Revisions
 20% Dislocation rate
 - 142 Both Component Revisions
 8% Dislocation rate

Factors influencing the longer-term survival of uncemented acetabular components used in total hip revisions. J Bone Joint Surg Am. 2004;86-a:342- 347. Jones CP, Lachiewicz P.

Indications for Stem Revision

- Infection
- Adverse stem radiographic features
- Modular neck components
- Component mal-position
- Unacceptable Taper damage

Modular Taper Adapters

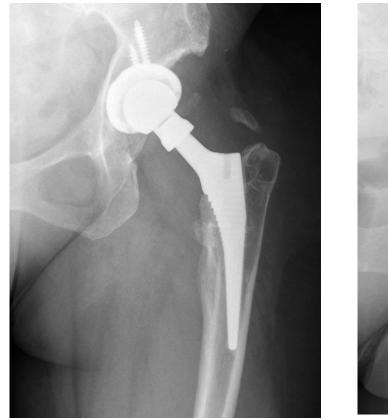
- made of forged titanium alloy Ti6Al4V

 increase the strength of the ceramic head for taper conditions encountered during revision surgery

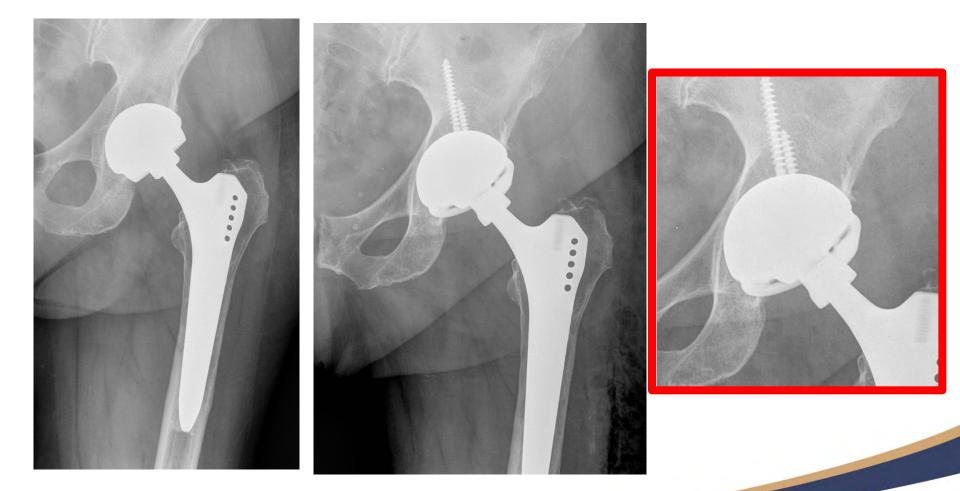
Taper Damage Assessment

Adapter sleeve levels out irregularities on the cone minimizing interface stress concentration

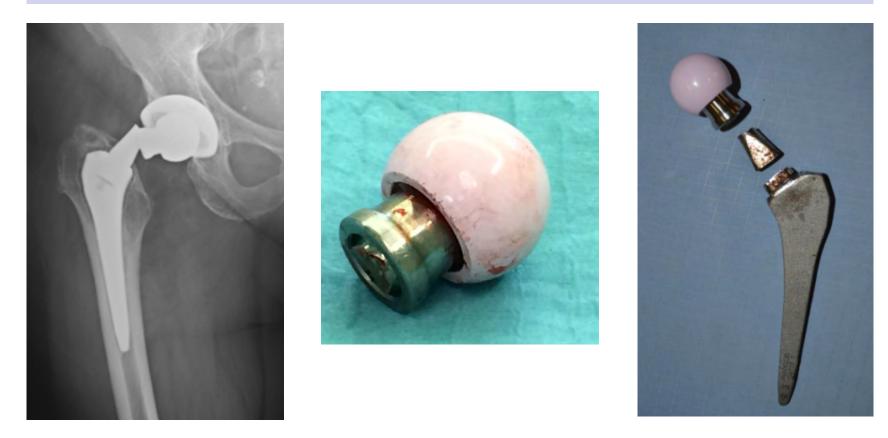
Case Example – Recurrent Instability



Limitations - Effect on head neck Ratio



Caution – Isolated Modular Exchange



Caution – Sleeve Adapters & Constrained Liners

Caution – Effect on overall femoral construct

A New case of a Modular Femoral Neck Device After THA Klemens Trieb and Nicola Stadler Orthopaedics 2015, 9, 126-128

Results & Outcome

- Cross-over between LDMoM
 - Bearing surface vs taper failure

- Isolated Taper Failure (Non-MoM)
 - Dominated by case reports
 - Recalled modular neck components
 - 27 cases MOP (Chicago group)

Outcome of Revision Surgery – Systematic Review

- Only 6 studies were eligible for inclusion with 216 hips revised for ARMD
 - **Complication rate 68%** for THR.
 - Re-revision rates were 21% for THR.
- Dislocation most common complications and indication for re-revision.

Revision of metal-on-metal hip replacements and resurfacings for adverse reaction to metal debris: a systematic review of outcomes Gulraj S. Matharu, Paul B. Pynsent, David J. Dunlop Hip International Vol. 24 Issue 4 p 311-420.

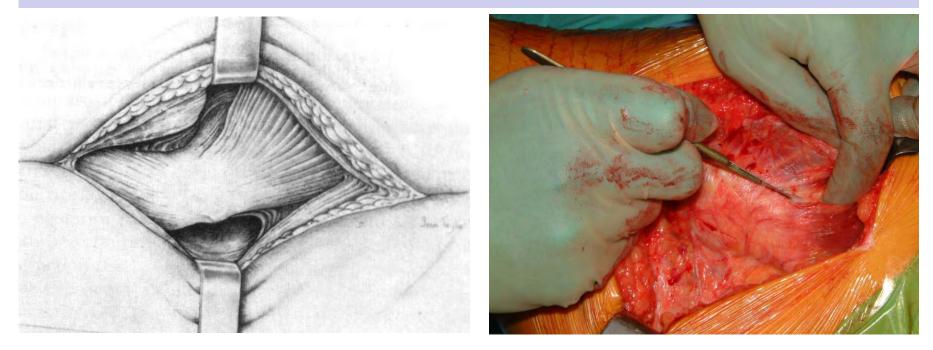
MoM THA Revision Experience

- Single Surgeon Consecutive Series 158 cases
- 36 & 40mm COC or COP
- 6 cases as 2 stage procedures
- 11% Constrained Liners
- 76% cases retained femoral stem

Outcome Series MoM Revision

Author & Institution	Number of Cases	Dislocation	Infection	Failure of Fixation	Re-revision Rate
Grammatopoulus et al Oxford	53	19%	5%	13%	40%
Garbuz et al Vancouver	32	28%	3% Superficial 0% Deep	12.5%	18.7%
Trousdale et al Mayo Clinic	58	4%	13%	-	14%
Jones Cardiff	158	5%	2% Superficial 1% Deep	2%	4%
					CYMRU CYMRU NHS WALES Bwrdd lechyd Prifysgol Caerdydd a'r Fro Cardiff and Vale University Health Board

MoM Revision - Lessons learnt instability


• When SERs & capsule only destroyed no dislocations Conclusion - 36 & 40mm heads solution

• All patients who dislocated had abductor damage

 Only recurrent dislocations had > 50% and posterior abductors destroyed

Abductor Muscle

Vertical fibers of posterior border have greatest role as lateral stabilizer

When these damaged have greatest effect on stability

Constrained Bearing

d lechyd Prifysgol ydd a'r Fro if and Vale WALES University Health Board

0

MoM Revision Complications

- 9 Dislocations (5%)
 - 7 Single events
- Re-operation 9 cases (6%)
 - Recurrent Dislocation (2 patients)
 - Cup Migration
 - Stem Subsidence
 - Deep Infection
 - Type B2 fracture at one year

ARTICLE IN PRESS

The Journal of Arthroplasty xxx (2015) xxx-xxx

Diagnosis and Management of Adverse Local Tissue Reactions Secondary to Corrosion at the Head-Neck Junction in Patients With Metal on Polyethylene Bearings

Darren R. Plummer, MD, MBA^a, Richard A. Berger, MD^b, Wayne G. Paprosky, MD^b, Scott M. Sporer, MD^b, Joshua J. Jacobs, MD^b, Craig J. Della Valle, MD^b

^a Department of Orthopaedic Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio ^b Orthopaedic Surgery, Midwest Orthopaedics at Rush, Chicago, Illinois

- **27 patients** with ALTR secondary to corrosion at the headneck junction with **MoP bearings**.
 - Modular bearing exchange using a ceramic head with a titanium sleeve in 23 of 27 cases
 - Only one recurrence of ALTR in patient with metal head
 - Complications requiring re-operation (18%)
 - One PJI (two-stage revision)
 - Recurrent instability 2 cases
 - One nerve palsy
 - Resolution of symptoms and decreases in metal levels.

Taperosis : Treatment & Outcomes

Modern Assessment – Methodology of Analysis & Planning

Surgeons require a clear strategy for management & prevention of dislocation

Justification of Modularity. Monoblocks Gordon Blunn

Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, Stanmor, University College London. England

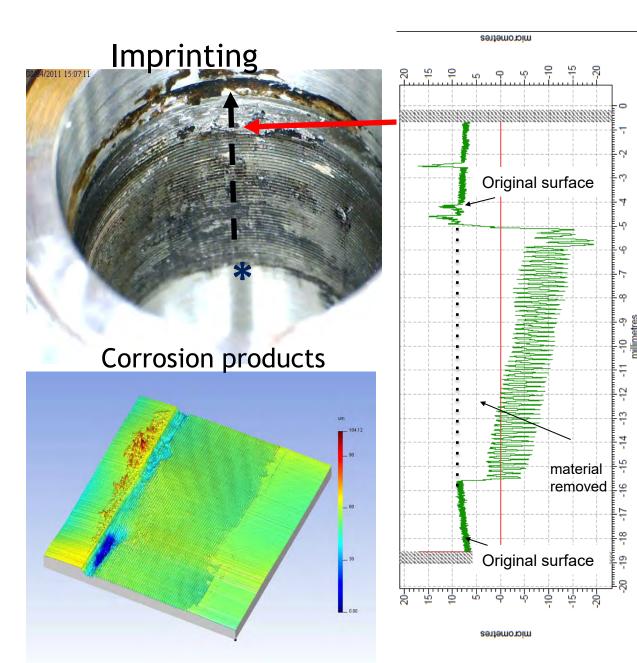
> NTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY +SOCIETÀ ITALIANA DELL'ANCA 2627 NOVEMBER 2015 MILAN, ITALY

Trunnionosis = Mechanically Assisted Crevice Corrosion

Head neck

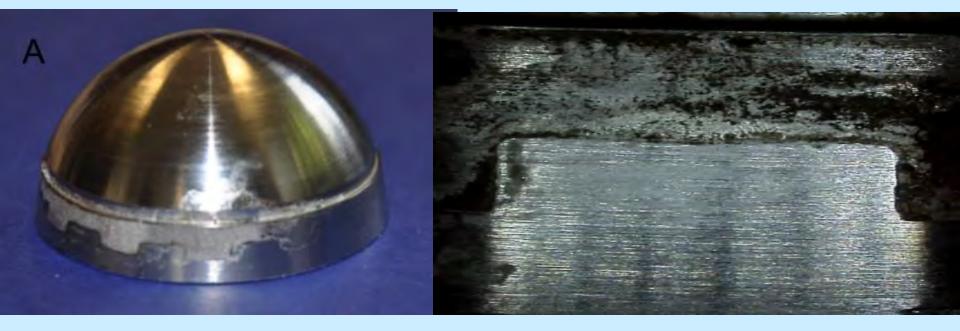
junction

Imprinting


Loss of CoCr

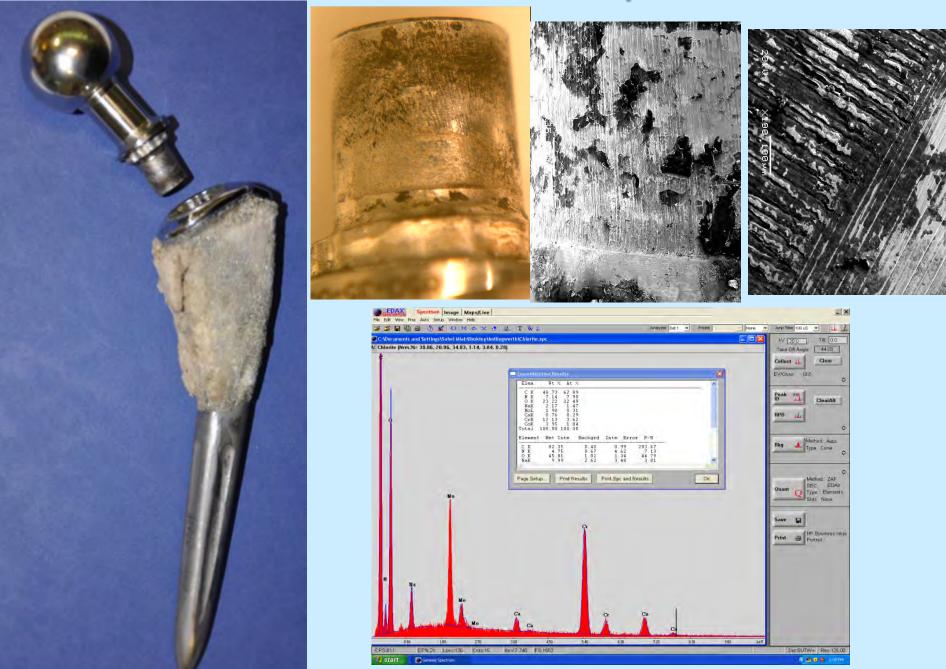
Formation of

corrosion


products around

the taper

Metal on metal Modular acetabular cups -A step to far for modularity?

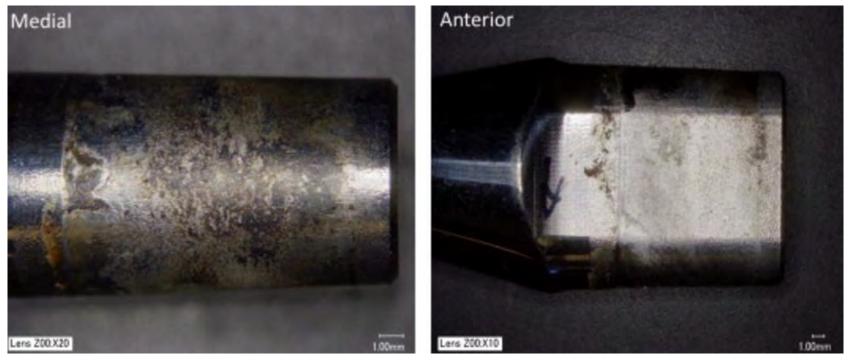

Trunnionosis - Mechanically Assisted Crevice Corrosion

Modular cup insert

MACC around the location lugs on the metal liner

Modular necks - a step to far

Modular femoral necks used in a number of different designs - modularity a step to far


Images showing various examples of modular neck femoral stems: a) DTC Margron modular hip prostheses (Portland Orthopaedics Pty Ltd, Matraville, Australia); b) ABG II (Stryker, Kalamazoo, Michigan); c) Rejuvenate (Stryker); d) Modular supercharged SC (Adler Ortho, Milan, Italy); e) M/L Taper Kinectiv (Zimmer, Warsaw, Indiana); f) ANCA-Fit (Wright Medical Technology, Arlington, Tennessee); g) Profemur E (Wright Medical Technology); h) Profemur Z (Wright Medical Technology); and i) Profemur B (Wright Medical Technology).

Material used and mechanisms of failure for the components of modular-neck hips

		Material [†]			
Prosthesis*	Site of modularity	Neck	Stem	Reasons for failure	
Profemur Z ⁸⁷	Neck/stem	Ti6Al4V	Ti6Al4V	F	
Metha Short Hip System ⁷⁶	Neck/stem	Ti6Al4V	Ti6Al4V	F	
Adaptor GHE/s short stem ⁸⁸	Neck/stem	CoCr	CoCr	C	
DTC Margron ⁵¹	Neck shoulder/stem	CoCr	Ti6Al4V	С	
ABG II and Rejuvenate ¹	Neck/stem	CoCr(GADS)	TiMo12Zr6Fe	2 C	
Alpha II ⁸⁴	Neck/stem	CoCr	CoCr	D	

F= fracture , C = corrosion D = dissociation

Rejuvenate neck stem junction

- Fretting corrosion greater on the medial and lateral aspects than on the anterior or posterior aspect
 - Fretting scores increased with the length of implantation

Corrosion and Fretting of a Modular Hip System: A Retrieval Analysis of 60 Rejuvenate Stems De Martino et al. Journal of Arthroplasty 30 (2015) 1470-1475 Adverse Clinical Outcomes in a Primary Modular Neck/Stem System Restrepo et al The Journal of Arthroplasty 29 Suppl. 2 (2014) 173-178

195 hips with 2 years follow-up (rejuvinate)

56% had no clinical symptoms, 26% had groin pain (typical of corrosion), and 17% had other symptoms.

Cobalt levels were comparable between asymptomatic (3.4 μ g/L, range 0.7-7.3 μ g/L) and symptomatic patients (4.0 μ g/L range 0-13.2 μ g/L).

Revision for corrosion was undertaken or scheduled in 13% of the hips

Some modular junctions may not be justified (neck/stem junction)

•Very difficult to justifying complete monoblocks designs Increase in inventory **Dislocation**? Leg length? Range of motion? Micro separation-increased wear? Stress shielding Get the modular interface right Better preclinical testing of tapers **Design of tapers Surgical Techniques**

The importance of taper design Design of the taper effects MACC

Panagiotidou A, Meswania J, Hua J, Muirhead-Allwood S, Hart A, Blunn G. Enhanced wear and corrosion in modular tapers in total hip replacement is associated with the contact area and surface topography. J Orthop Res. 2013 Dec;31(12):2032-9.

S-rom 11/13 larger engagement smooth Corail 12/14 small engagement- rough

•10 Million Cycle Loading Test

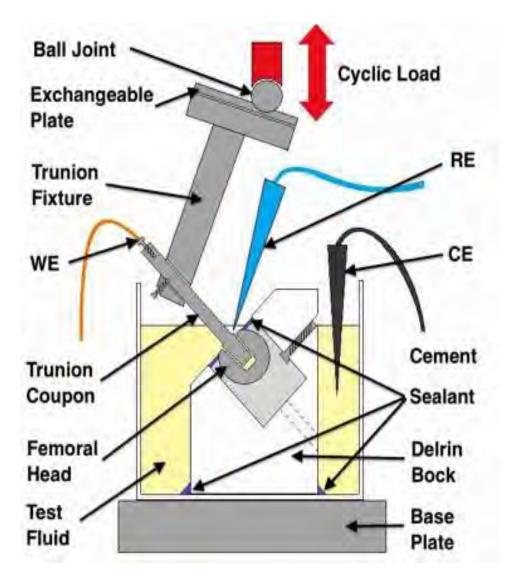
•Based on the ISO standards for fatigue testing Implants for surgery - Partial and total hip joint prostheses – ISO 7206 Part 4: Endurance Performance of stemmed femoral components with application of torsion

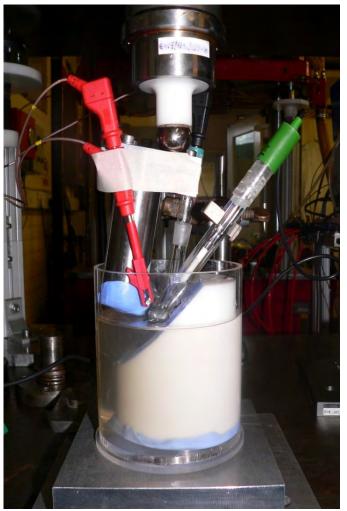
Test 1

12/14 rough small spigot (n = 3). 12/14 rough standard spigot (n = 3).

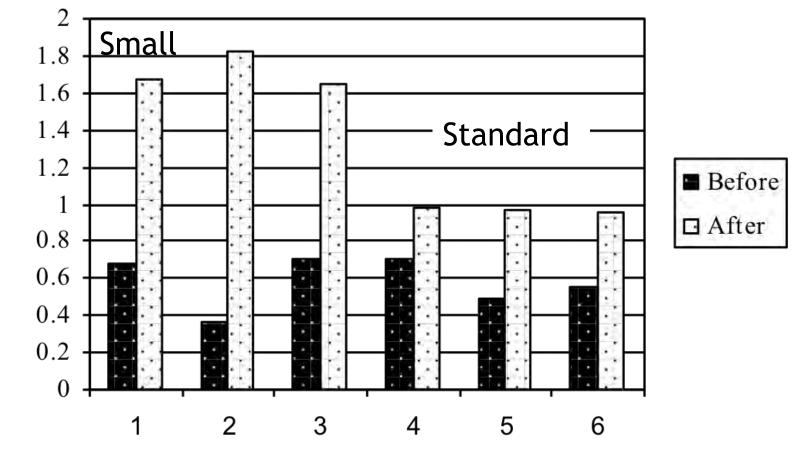
Same finish male taper : different engagement length

Test 2

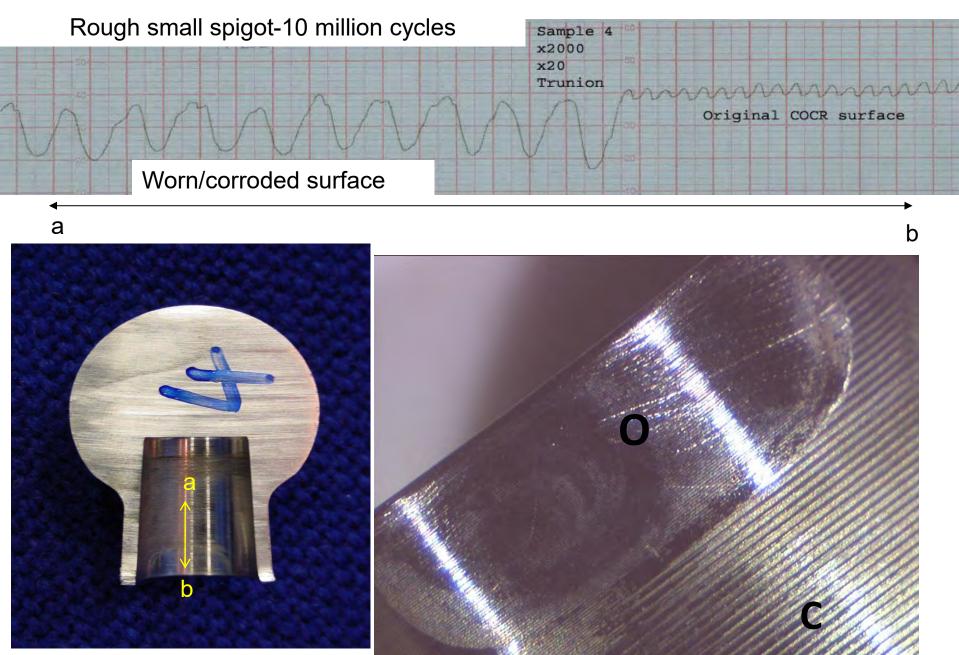

small spigot - male taper -smooth finish (n=3) small spigot- male taper – rough finish (n= 3) Same engagement : different finish male taper


Monitored Corrosion Current in a short term cyclic loading test

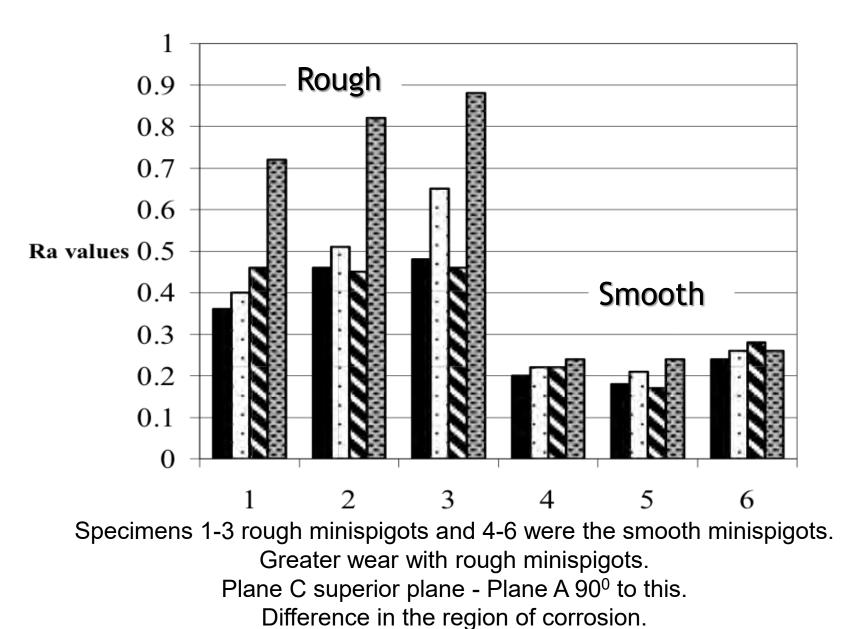
•ASTM F1875: Standard practice for testing modular implant interfaces: Hip femoral head bore and cone taper interface. Short term cyclic tests where the corrosion current between the head and trunion were measured.


Preclinical in vitro testing to measure taper wear and corrosion

Standard Practice for Fretting Corrosion Testing of Modular Implant Interfaces (ASTM F1875-98)

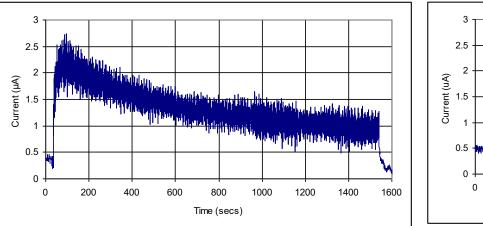


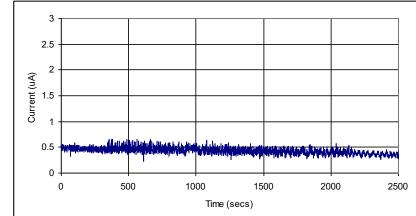
Test 1 :Same finish : different engagement length


roughness was greater in the small spigot group with higher Ra values (1.65-1.83 μ m), compared to the standard spigot group (0.96-0.98 μ m). The male tapers showed negligible difference before and after testing in all specimens.

Imprinting

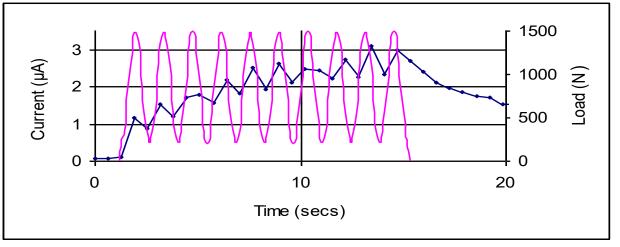
Same small spigot : different finish

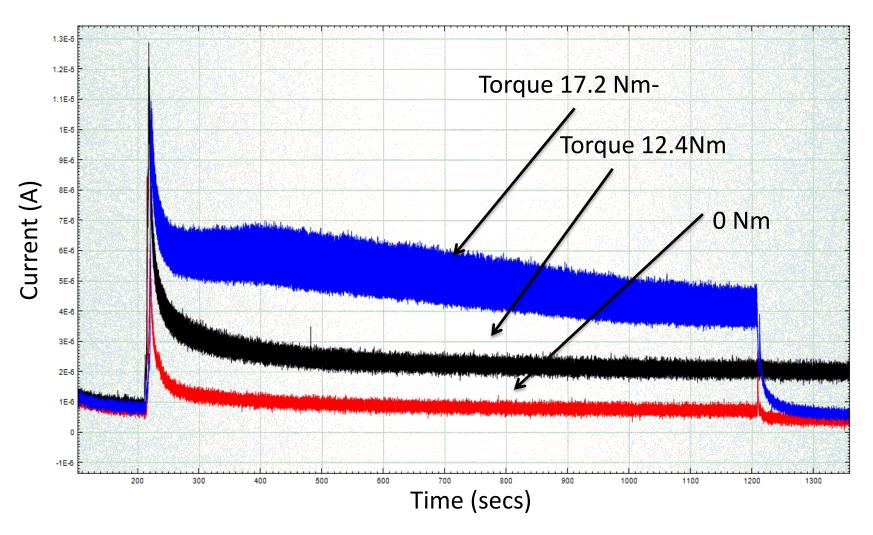

Before Plane A DAfter Plane A Before Plane C After Plane C



Potentiostatic Tests -

Current response of loading at applied potential of 200mV




small spigot smooth finish on taper

small spigotCurrent for 10 cycles of load

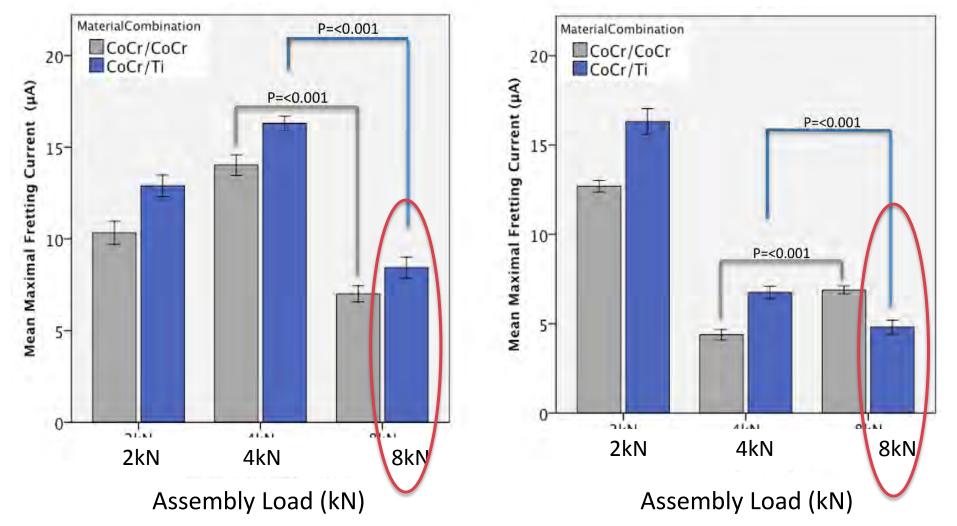
An implant alloy will spontaneously form a protective oxide layer on its surface and acts as a semiconductor in the circuit, and therefore if this layer is damaged or removed a spike in the current will be observed.

Increased Torque effects MACC Cobalt chrome head/Ti stem

Panagiotidou A, Meswania J, Osman K, Bolland B, Latham J, Skinner J, Haddad FS, Hart A, Blunn G. The effect of frictional torque and bending moment on corrosion at the taper interface : an in vitro study. Bone Joint J. 2015Apr;97-B(4):463-72.

Surgical technique can influence MACC?

Investigated Impaction force at 2,4 and 8 kN in Short rough tapers (worst case scenario) Smooth tapers with longer engagement lengths


> CoCr heads Ti alloy stems CoCr heads CoCr stems

Short Term – 1000 Cycles

Effects of assembly load on fretting currents depends on taper design

Rough-Short

Smooth-Standard

Conclusions

 Very difficult to justify going back to monoblocks designs Inventory and also performance However some modular junctions may be a step to far Get the modular interface right Better preclinical testing of tapers **Design of tapers** Surgical Techniques

-Thank you-

London Implant Retrieval Centre

Acknowledgements

- Alister Hart
- John Skinner
- Anna Panagiotidou
 - Harry Hothi
 - Jay Meswania
 - Tim Cobb
- Sarah Muirhead-Allwood
 - Fares Haddad
 - Ben Bolland
 - Jeremy Latham

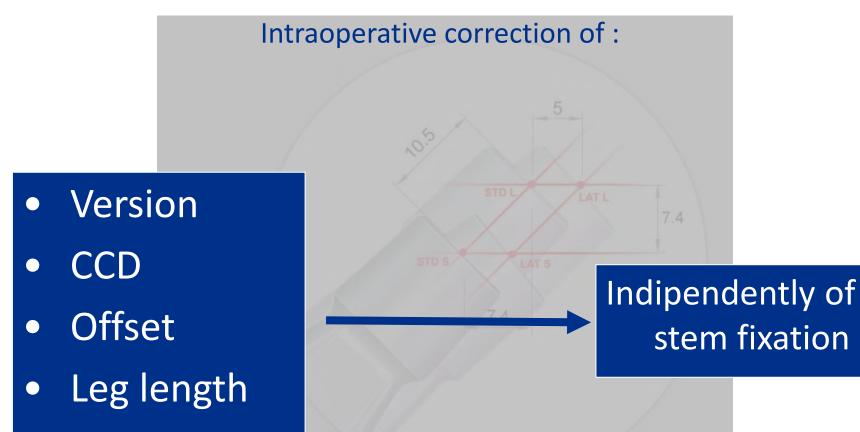
CROSS-FIRE Femoral neck modularity: still justified? P. Cavaliere - F. De Meo

Institute GIOMI "F. Faggiana", Reggio Calabria – "F. Scalabrino", Messina ITALY

- Dr. Cavaliere Pietro

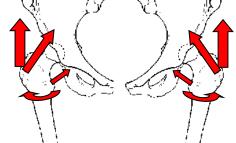
- Lima Coorporate: consultant
- Gruppo Bioimpianti: royalties for implants design
- Biomet / Zimmer: consultant
- Dr. De Meo
 - none declared

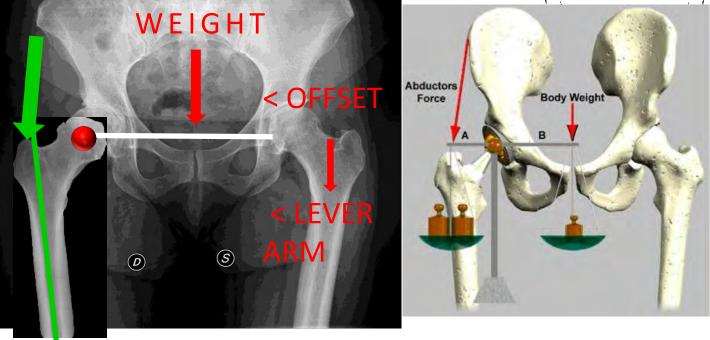
LATEST NEWS



Why modular necks ?

Managing Length and Stability: The Role of the Modular Neck S. D. Steppacher, MD; T. M. Ecker, MD; I Timmerman, MS; Stephen B. Murphy, MD Orthopedics September 2008 - Volume 31 · Issue 9

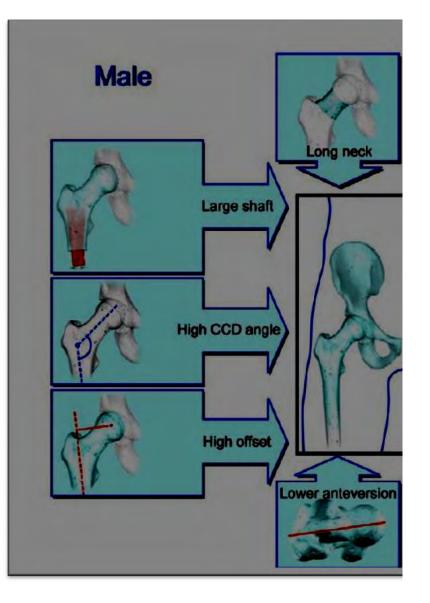




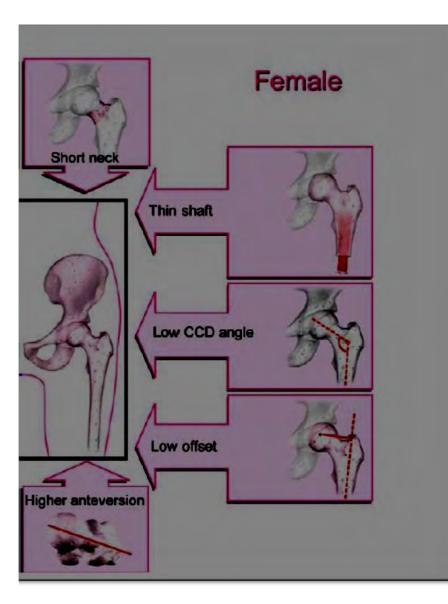
Why modular necks ?

- The hip muscles work on a rotation center
- Each muscle works on a specific lever arm

LEVER ARM

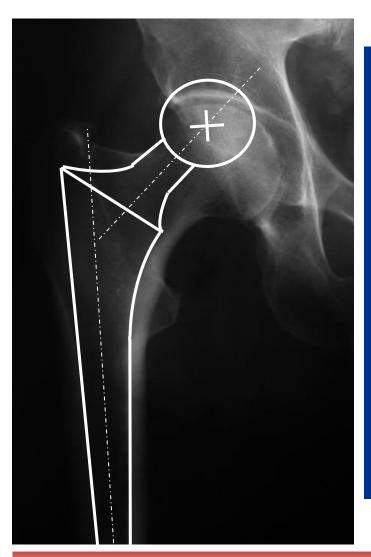

Proximal femur: high anatomical variability

- 1. Offset: 27-57mm (Davey J.R. AAOS 2003)
- 2. CCD angle : 105.7° 154.5° (Noble P.C. CORR 1988)
- 3. Low correlation upper femur with canal. (Noble P.C. CORR 1988)
- 4. Significant anatomy differences between male and female anatomy (Wang SC, Ass.Ad.Autom.med, 2004; Traina F, JBJS 2009)


- 1. Wider inner canal
- 2. High CCD angle
- 3. Long femoral neck
- 4. Increased offset
- 5. Less antetorsion

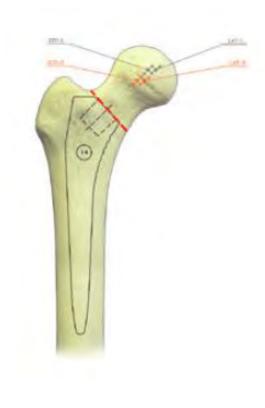
Sex Differences in Hip Morphology: is stem modularity effective for THA? F. Traina, M. De Clerico, F. Biondi, F. Pilla, E.Tassinari, A. Toni. *JBJS Am. 2009;91: 121-128*

- 1. Narrower inner canal
- 2. Low CCD angle
- 3. Short femoral neck
- 4. Less offset
- 5. Higher antetorsion


Sex Differences in Hip Morphology: is stem modularity effective for THA? F. Traina, M. De Clerico, F. Biondi, F. Pilla, E.Tassinari, A. Toni. *JBJS Am. 2009;91: 121-128*

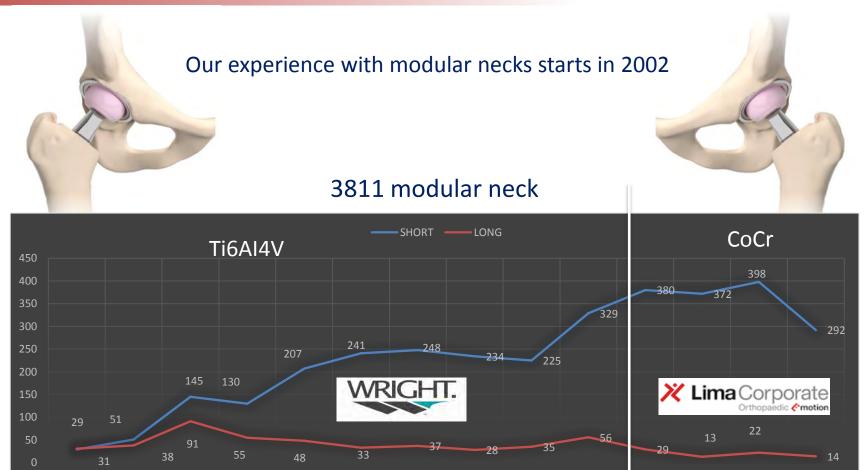
Monoblock stem limitations

- Patient's anatomy is forced to implant design
- Decentered femoral canal preparation for proper version
- Lengthening is needed to obtain stability
- Lever-arm alteration
- To adjust offset different implants are required
- ROM may result reduced
- Higher impingement risk



Combination of pre-operative planning and intraoperative modularity is our gold standard

- Proximal femur and/or pelvic deformities
- Flexion contractures
- General or regional anesthesia



2725

2004

5mm

1086

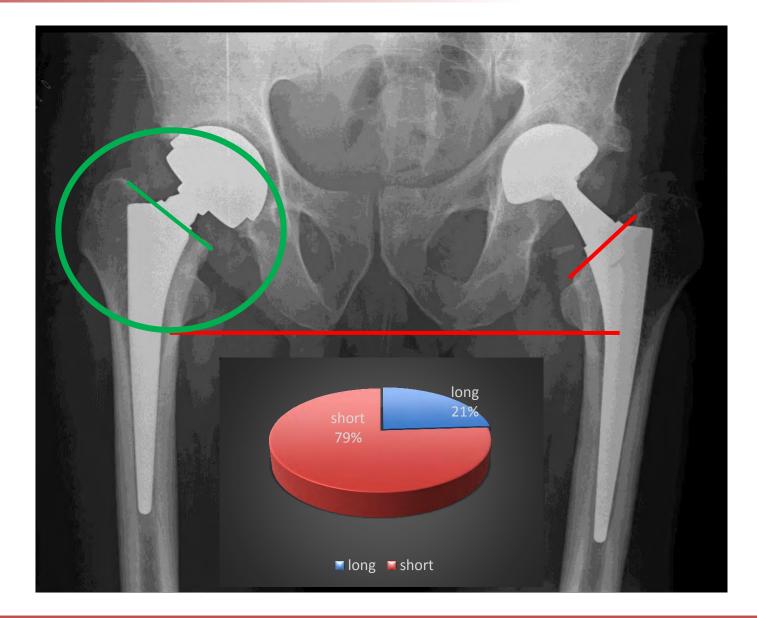
2014

2015

2012

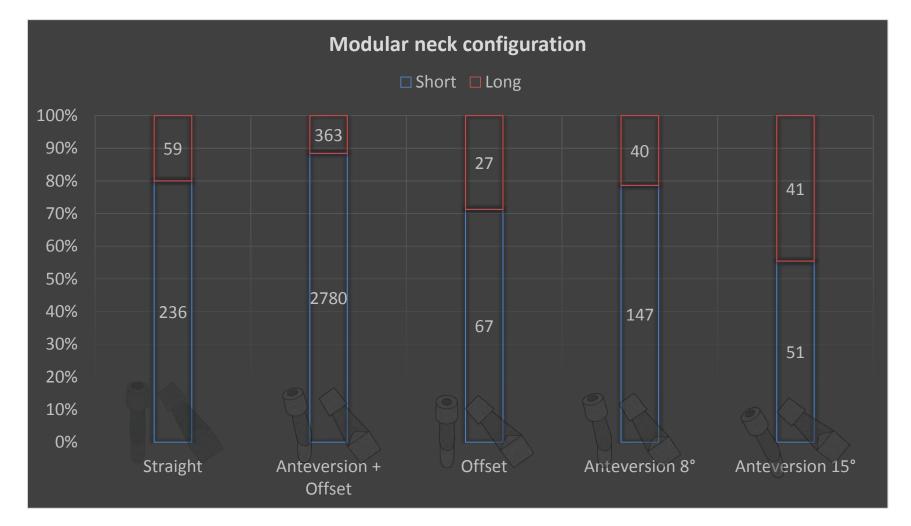
10° 10°

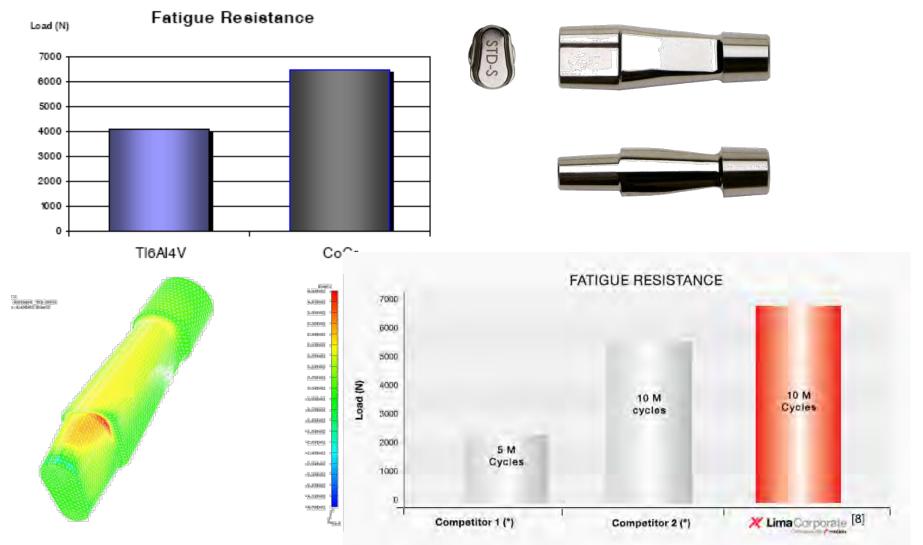
2013



CROSS-FIRE Femoral neck modularity: still justified? – P. Cavaliere F. De Meo

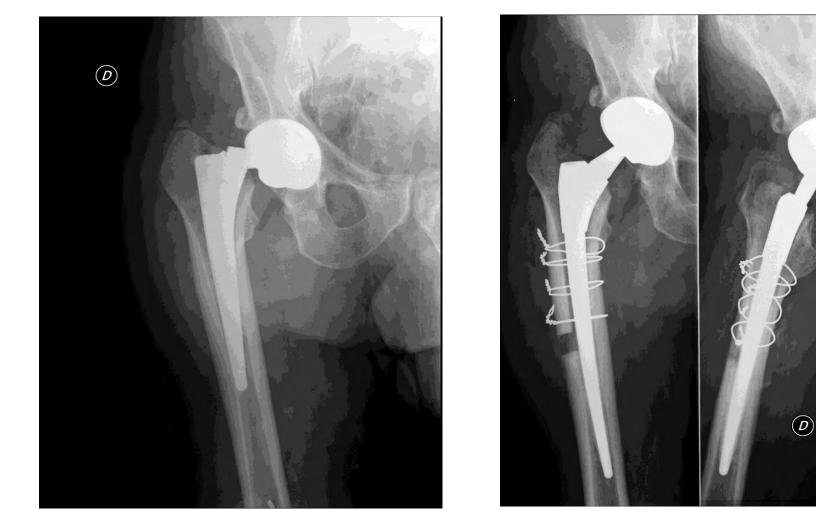
10.5mm



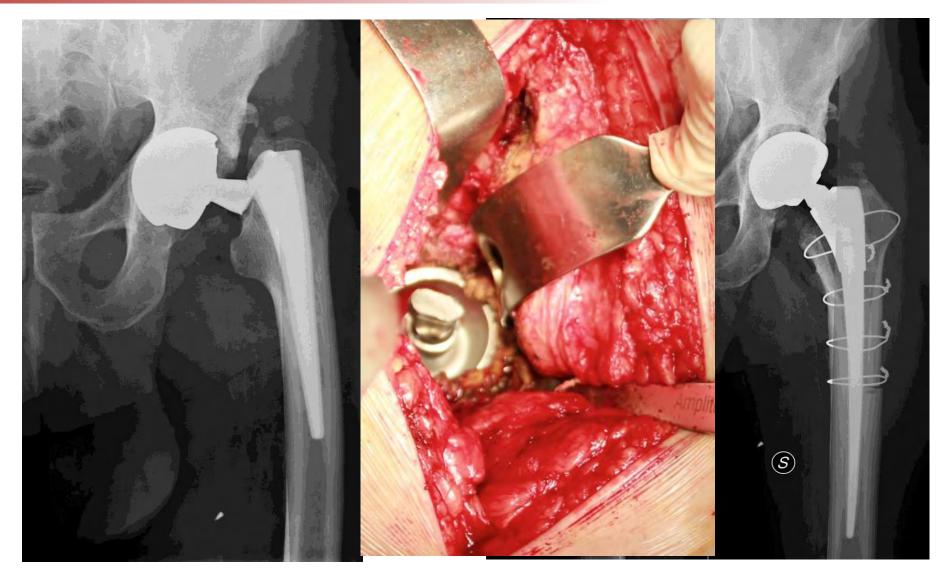

72,9% of necks used between 2002-2015 were short anterverted and with offset

CoCr MODULAR NECKS

J Orthop Res. 2013 Aug;31(8):1165-71. doi: 10.1002/jor.22354. Epub 2013 Apr 1.


Micromotions at the taper interface between stem and neck adapter of a bimodular hip prosthesis during activities of daily living. Jauch SY1, Huber G, Sellenschloh K, Haschke H, Baxmann M, Grupp TM, Morlock MM.

COMPLICATION RELATED TO MODULARITY


20.04.09 - 🖒 58 years BMI 38,4 Long neck AR / VV 1

COMPLICATION RELATED TO MODULARITY

07.09.12 - ♂ 63 years BMI 42 Long neck VV

COMPLICATION RELATED TO MODULARITY

01.04.15 - 👌 50 years BMI 36

- Ti6Al4V neck fracture: 2/2725 (0,07%)
- CoCr neck fracture : none 0/1086
- Neck / Stem disassembly : 1/3811 (0,02%)
- ALVAL ARMD : not observed

Clin Orthop Relat Res (2014) 472:1240-1245 DOI 10.1007/s11999-013-3361-4 Clinical Orthopaedics and Related Research[®] A Publication of The Association of Bone and Joint Surgeons[®]

CLINICAL RESEARCH

Modular versus Nonmodular Neck Femoral Implants in Primary Total Hip Arthroplasty: Which is Better?

Paul J. Duwelius MD, Bob Burkhart PA, Clay Carnahan PA, Grant Branam BSc, Laura Matsen Ko MD, YingXing Wu MD, Cecily Froemke MS, Lian Wang MS, Gary Grunkemeier PhD

Item	Nonmodular	Modular	p value
Number of patients	284	594	
Surgery date	August 1, 2005, to September 8, 2009	May 9, 2007, to December 22, 2009	
Age (years)	62 ± 11	62 ± 10	0.65
Male sex	52% (148)	53% (312)	0.91
Diabetes	9% (25)	14% (81)	0.04
Side (left/right)	46%/54% (131/153)	49%/51% (291/303)	0.43
Preoperative diagnosis			0.01
Osteoarthritis	90% (212)	95% (558)	
Avascular necrosis	6% (14)	2% (11)	
Other	4% (9)	3% (20)	
Head size			< 0.01
32 mm	59% (169)	9% (56)	
36 mm	39% (110)	51% (302)	
40 mm	2% (5)	40% (236)	

- no fractures or stem failures in this large and relatively unselected series
- modular neck stems did not lead to improved clinical hip scores, reduction in complications
- there are known risks of modularity (pseudotumors, implant fractures, fretting, third-body wear, and trunnion corrosion)

HIP ISSN 1120-7000 Hip Int 2015; 25 (5): 484-487 DOI: 10.5301/hipint.5000257

ORIGINAL ARTICLE

Metal ion levels in ceramic-on-ceramic THR with modular necks: analysis of cobalt and chromium serum levels in 30 healthy hip patients

Jan F.A. Somers

Department of Orthopaedics, Jan Yperman Hospital, Ypres - Belgium

- no patient had measurable chromium levels
- no differences in cobalt levels for hips with short necks versus hips with long necks
- excellent long-term clinical outcomes

Instructional Review: Hip Modular necks femoral stems H. Krishnan, S. P. Krishnan, G. Blunn, J. A. Skinner, A. J. Hart The Bone & Joint Journal VOL. 95-B, No. 8, AUGUST 2013 1011

Grupp et al. BMC Musculoskeletal Disorders 2010, 11:3 http://www.biomedcentral.com/1471-2474/11/3

BMC Musculoskeletal Disorders

RESEARCH ARTICLE

Open Access

Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

Thomas M Grupp^{1+†}, Thomas Weik^{1†}, Wilhelm Bloemer¹, Hanns-Peter Knaebel²

- combination of the cobalt-based alloy and the titanium alloy of the shaft shows a considerably higher rigidity. The smaller micro-movements reduce abrasion.
- the highly stable passive layer of the cobalt-based alloy provides an improved resistance against fretting.
- the cobalt alloy has a much lower notch sensitivity compared to the titanium alloy. This enhances fatigue strength.
- Identified risk factors of implant failure :
 - particle contamination of the cone connection
 - excessive loading due to a patient weight above 100 kg
 - high activity level and male gender.

Copyright © 2010 by The Journal of Bone and Joint Surgery, Incorporated

Fracture of a Modular Femoral Neck After Total Hip Arthroplasty

A Case Report

By Commander Geoffrey Wright, MD, Scott Sporer, MD, MS, Robert Urban, PhD, and Joshua Jacobs, MD

Investigation performed at the Department of Orthopedics, Rush University Medical Center, Chicago, Illinois

Copyright © 2010 by The Journal of Bone and Joint Surgery, Incorporated

Early Failure of a Modular Femoral Neck Total Hip Arthroplasty Component

A Case Report

By David A.J. Wilson, MASc, BEng, Michael J. Dunbar, MD, FRCSC, PhD, John D. Amirault, MD, FRCSC, and Zoheir Farhat, PhD, PEng

Investigation performed at QEII Health Sciences Centre, Halifax, Nova Scotia, Canada

Copyright © 2010 by The Journal of Bone and Joint Surgery, Incorporated

Corrosion-Induced Fracture of a Double-Modular Hip Prosthesis

A Case Report

By Sara A. Atwood, MS, Eli W. Patten, MS, Kevin J. Bozic, MD, Lisa A. Pruitt, PhD, and Michael D. Ries, MD

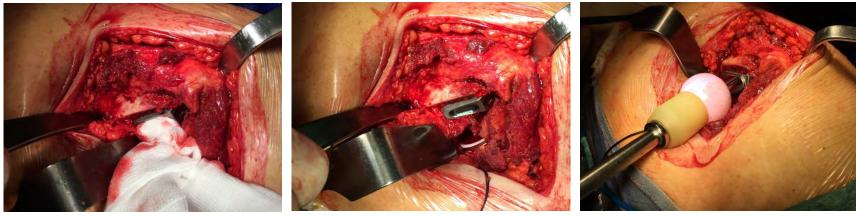
Investigation performed at the University of California at Berkeley, Berkeley, California

- A Case of Disassociation of a Modular Femoral Neck Trunion After Total Hip Arthroplasty Scott M. Sporer, Craig DellaValle, Joshua Jacobs, Markus Wimmer The Journal of Arthroplasty September 2006 (Vol. 21, Issue 6, Pages 918-921) Abstract | Full Text | Full-Text PDF (294 KB)
- Total Hip Arthroplasty Modular Neck Failure Corrected Proof, 12 April 2010 Jack G. Skendzel, J. David Blaha, Andrew G. Urquhart The Journal of Arthroplasty DOI: 10.1016/j.arth.2010.03.011 Abstract | Full Text | Full-Text PDF (140 KB)
- 3. Failure of the Modular Neck in a Total Hip Arthroplasty , 19 October 2009

Chris J. Dangles, Carl J. Altstetter The Journal of Arthroplasty October 2010 (Vol. 25, Issue 7, Pages 1169.e5-1169.e7) <u>Abstract | Full Text | Full-Text PDF (351 KB)</u>

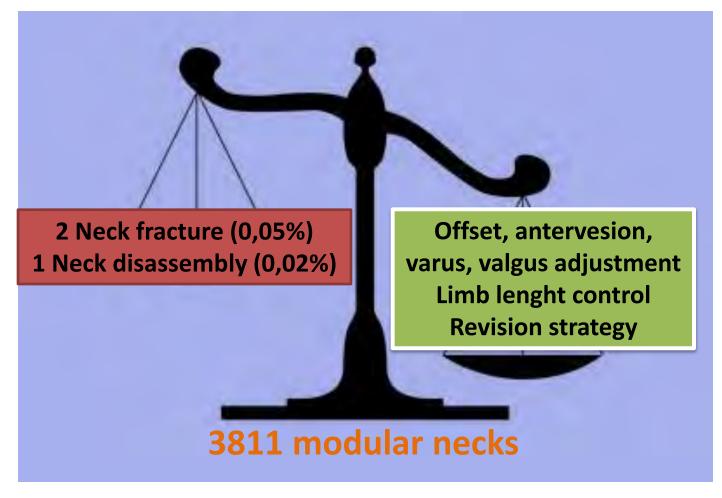
 Influence of Technique With Distally Fixed Modular Stems in Revision Total Hip Arthroplasty, 03 September 2009 Preetesh D. Patel, Alison K. Klika, Trevor G. Murray, Karim A. Elsharkawy, Viktor E. Krebs, Wael K. Barsoum The Journal of Arthroplasty September 2010 (Vol. 25, Issue 6, Pages 926-931) Abstract | Full Text | Full-Text PDF (507 KB)

TAKE HOME A MESSAGE


- Consider neck modularity as a fine tuning of the THA
- Don't use long necks in overweight patients (BMI >35)

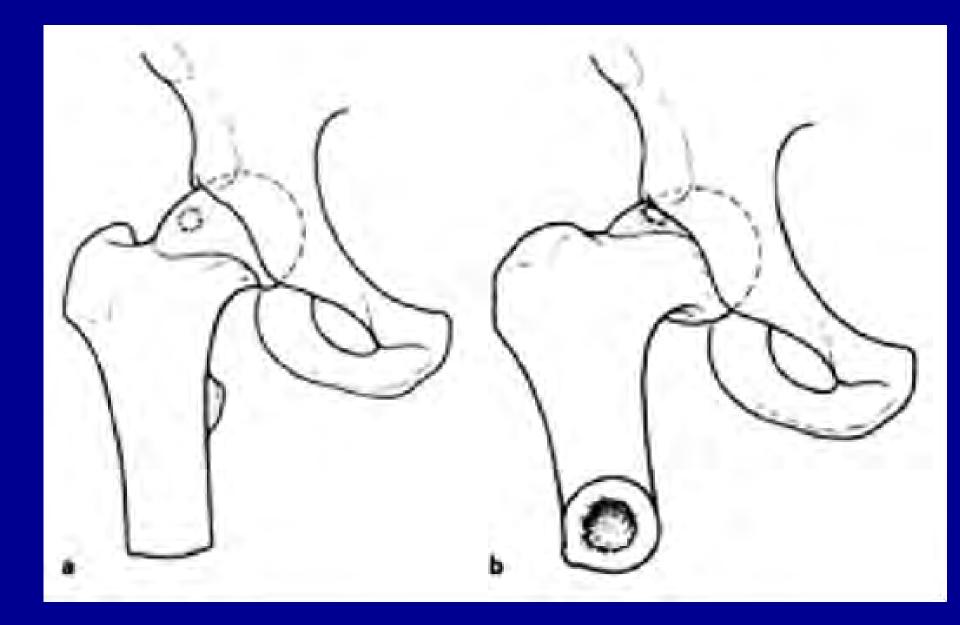
Avoid intraoperative particle contamination of the cone connection

Always wash and dry !



TAKE HOME A MESSAGE

STILL JUSTIFIED ? YES



FAI and lumbar stiffness

A. Aprato

University of Turin, ITALY

Dynamic changes in pelvic tilt significantly influence the functional orientation of the acetabulum and must be considered. Dynamic anterior pelvic tilt is predicted to result in earlier occurrence of FAI in the arc of motion

Am J Sports Med. 2014 Oct;42(10):2402-9

Dynamic anterior pelvic tilt is predicted to result in earlier occurrence of FAI in the arc of motion

Am J Sports Med November 2014 vol. 42 no. 11 2649-2653

AIMS:

- to evaluate lumbar hyperlordosis and range of motion in patients with arthroscopically treated FAI
- 2. to compare those results with healthy subjects.

MATERIALS AND METHODS:

17 healthy volunteers (control group)

21 patients with surgically treated FAI (FAI Group)

VARIABLE	GFAI	GC	р
Age, years (SD)	35 (10)	34 (10)	0,70 ^a
Gender n (%) M F	9 (42,9) 12 (57,1)		0,80 ^b
Sport, n (%) Yes No	10 (47,6) 11 (52,4)		0,06 ^b
N of sport days/a week, mean (SD)	3,10 (1,60)	2,93 (1,07)	0,88 ^a
N of sport hours/a week, mean (SD)	1,61 (0,78)	1,45 (0,50)	0,75 ^a
a= U Mann Withney			•

b= Chi Squared test

- 1. Hip range of motion
- 2. quality of life (SF-12 and EQ5D)

- 3. flexibility tests (Sit and Reach test)
- 4. spine morphological analysis with Spinal Mouse;

Variabile	N (GFAI)	N (GC)	Media (GFAI)	Media (GC)	Mediana (GFAI)	Mediana (GC)	Dev. St (GFAI)	Dev St. (GC)	Intervallo (GFAI)	Intervallo (GC)	z	р	ES
VAS	21	17	68.65	84.65	75.50	85	20.90	8.77	81	35	2.933	0.003	1.00
SIT and REACH	21	17	26.02	33.48	26.35	36.60	9.76	9.81	32.10	36.70	2.393	0.017	0.76
Rot. Ext. SX	21	17	28.55	37.94	28	40	9.08	8.72	33	36	2.692	0.007	1.44
Rot. Ext. DX	21	17	30.35	36.41	30	36	9.77	8.02	39	29	- 1.837	0.066	0.68
Rot. Int. DX	21	17	32.50	40.06	30.50	40	10.49	5.43	40	20	2.601	0.009	0.91
Rot. Int. SX	21	17	30.30	38.71	31	38	9.86	6.10	44	22	3.059	0.002	1.03
Abduzione DX	21	17	31.35	42.06	32	40	11.53	8.85	43	37	2.736	0.006	1.04
Abduzione SX	21	17	29.85	42.41	30	44	8.14	9.01	33	34	3.676	0.000	1.46
FABER DX	21	17	4.30	0.53	4	0	3.25	1.18	10	3	4.029	0.000	1.54
FABER SX	21	17	5.35	0.35	6	0	2.80	0.86	10	3	4.905	0.000	2.41
FADIR DX	21	17	4.55	0.82	4	0	3.15	1.98	10	8	3.653	0.000	1.42
FADIR SX	21	17	5.80	0.65	6	0	2.93	1.22	10	4	4.611	0.000	2.29
SF12 Tot.	21	17	24.95	30.06	27.50	30	7.10	3.83	22	14	2.552	0.011	0.94
Salute Fisica	21	17	10.35	14.24	11.50	15	3.90	1.82	12	7	3.692	0.000	1.28
Spinal: Sagittale: Flex – Ext (ROM) LSp	21	17	63.20	72.65	60	74	14.50	11.87	52	45	2.000	0.046	0.71
Spinal: SagittaleFlessione: LSp	21	17	20.70	27.76	20.50	27	9.06	9.95	39	38	2.136	0.033	0.74

Tabella n.1 Test U Mann Withney

EXTERNAL ROTATION

LEFT: CONTROL GROUP: 37,94 ± 8,72; FAI GROUP: 28,55 ± 9,08. (p:0,007)

RIGHT: CONTROL GROUP: 36,41 ± 8,02 FAI GROUP: 30,35 ± 9,77. (p: 0,066).

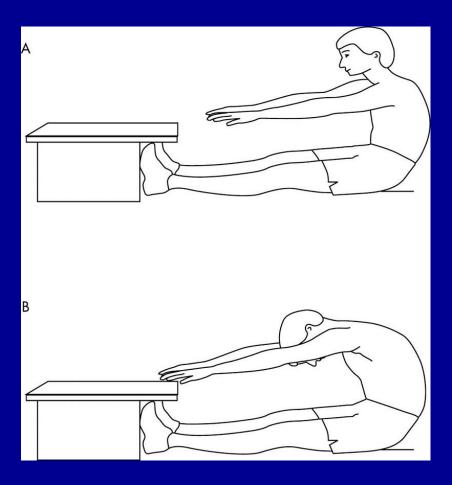
INTERNAL ROTATION

RIGHT: CONTROL GROUP: 40,06 ± 5,43 FAI GROUP: 32,50 ± 10,49 (p: 0,009)

LEFT: CONTROL GROUP: 38,71 ± 6,10 FAI GROUP: 30,30 ± 9,86 (p: 0,002)

ABDUCTION

RIGHT CONTROL GROUP: 42,06 ± 8,85 FAI GROUP: 31,35 ± 11,53 (p: 0,006)


LEFT CONTROL GROUP: 42,41 ± 9,01 FAI GROUP: 29,85 ± 8,14 (p< 0,001)

EQ5D CONTROL GROUP: 84,65 ± 8,77 FAI GROUP: 68,65 ± 20,90 (p: 0,003)

SF-12

CONTROL GROUP: 30,06 ± 3,83 FAI GROUP: 24,95 ± 7,10 (p: 0,011)

SIT AND REACH TEST

CONTROL GROUP: 33,48 ± 9,81

FAI GROUP: 26,02 ± 9,76

(p: 0,017)

SPINAL MOUSE:

Arch Orthop Trauma Surg (2004) 124:187–192 DOI 10.1007/s00402-004-0641-1

ORIGINAL ARTICLE

R. B. Post · V. J. M. Leferink

Spinal mobility: sagittal range of motion measured with the SpinalMouse, a new non-invasive device

Segment	Static test	data		Range of motion data			
	Upright	Flexion	Extension	Flex-upr	Upr-ext	Flex-ext	
Th1/2	9	0	4	8	5	-3	
Th2/3	6	4	3	-2	3	0	
Th3/4	4	5	9	0	-4	-4	
Th4/5	3	3	5	0	-2	-2	
Th5/6	4	1	3	-3	1	-2	
Th6/7	5	4	6	-1	-2	-2	
Th7/8	4	6	4	2	0	2	
Th8/9	5	8	3	3	2	5	
Th9/10	3	13	4	11	-1	9	
Th10/11	-1	8	4	9	-4	5	
Th11/12	-3	5	-3	7	1	8	
Th12/L1	-1	6	-3	7	1	9	
L1/2	-1	7	-1	8	0	8	
L2/3	-2	10	-4	12	2	13	
L3/4	-4	10	-7	15	3	17	
L4/5	-4	4	-7	8	3	11	
L5/S1	-7	1	-7	8	-1	7	
Sac/Hip	10	57	-8	47	18	65	
Thor.Sp	39	58	41	19	-3	16	
Lum.Sp	-21	37	-29	58	8	66	
Inclin	0	103	-23	103	23	126	
Lth	569	704	557	135	12	147	

SPINAL MOUSE: STATIC SAGITTAL PLANE ANGLES

NO DIFFERENCES BETWEEN THE TWO GROUPS

(all p> 0,05)

SPINAL MOUSE: FLEXION ON SAGITTAL PLANE (LSp)

CONTROL GROUP: 27,76 ± 9,95

FAI GROUP: 20,70 ± 9,06

(p: 0,033)

SPINAL MOUSE: ROM SAGITTAL PLANE

CONTROL GROUP: 72,65 ± 11,87

FAI GROUP: 63,20 ± 14,50

(p: 0,046)

CONCLUSIONS:

Two groups were comparable in terms of age and sex.

Hip ROM was significantly lower in GFAI,

this group showed lower results at Sit and Reach tests

lower lumbar ROM,

higher values of lumbar stiffness

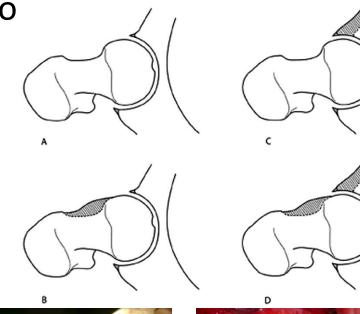
THANKS

Does the femoral head/neck contour in the skeletally mature change over time?

> Luca Gala MD Vickas Khanna MD FRCSC Kawan Rakhra MD FRCPC Paul E. Beaulé MD FRCSC

uOttawa

L'Université canadienne Canada's university


Azienda Ospedaliera Istituto Ortopedico GAETANO PINI

Introduction

- Cam-type impingement refers to alterations in the osseous contour at the level of the femoral head-neck interface
- Abnormal contact between femoral head and neck
- Hip pain, labral tears, cartilage delamination and potentially osteoarthritis later in life

Ganz et al 2001

Incidence

• 10% to 15% in young active patients

94% of young patients with hip pain

Grossman et al, JAAOS'01

- Unclear when or how this deformity is acquired:
 - Developmental
 - Reactive
 - Part of OA

Hack et al JBJS'10

• Link between aggressive adolescent sport training and the development of bony changes of FAI

Murray et al BrJR'65

- Chronic overuse of the proximal femur might represent repetitive indirect trauma
- Stimulate a similar growth plate extension with resultant metaphyseal deformity

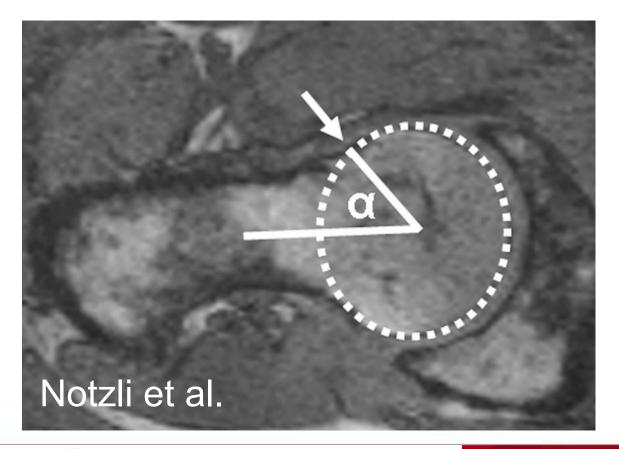
- 200 asymptomatic volunteers
- Bilateral hip MRI
- Alpha angle > 50.5° = CAM
- 14% with CAM (10.5% one hip, 3.5% both)
- 24.7% males / 5.4% females

Purpose Of Study

 Radiographically determine whether Cam lesions of the hip are a static or dynamic deformity

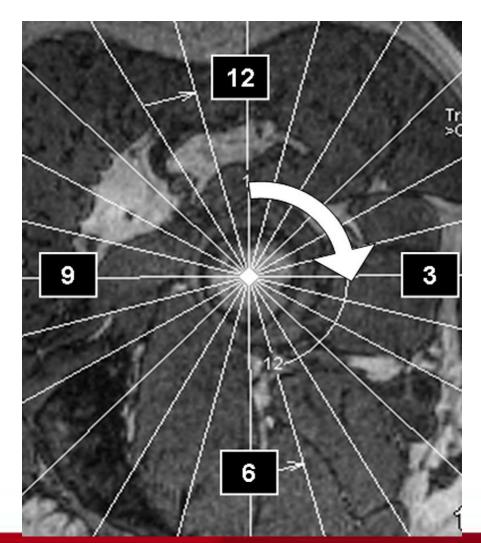
 The results were compared to the original MRI findings to identify any difference in alpha angle using a paired t-test evaluation, with clinical significance set as p< 0.05.

Materials & Methods


- 23 patients prospectively selected (MRI or CT)
- 10 patients CAM pos.
- 13 CAM neg. (control group)
- 16 males and 7 females
- Mean age 37.5 (30-56)

Materials & Methods

Power analysis 80% (expected mean alpha angle difference 5°)



Alpha Angle

- Oblique axial 3:00 and radial 1:30
- MSK radiologist
- Ortho Fellow
- Inter-observer reliability 0.95

Patient Demographics

RESULTS

ALC: NO.					
		Mean	N	Std. Deviation	p-values
Pair 1	R Axial 3 FIRST READING	45.2	18	7.3	
	R Axial 3 FOLLOW-UP	47.7	18	8.8	.1640
Pair 2	R Radial 1.30 FIRST READING	54.5	18	9.1	
	R Radial 1.30 FOLLOW-UP	55.6	18	8.7	.3640
Pair 3	L Axial 3 FIRST READING	43.8	18	7.7	
	L Axial 3 FOLLOW-UP	47.4	18	9.9	.0680
Pair 4	L Radial 1.30 FIRST READING	55.2	18	10.4	
		540	4.0		0000

4 Pairs were created so the first readings were compared to the follow-up measurements for every hip at the 3 and 1.30 position

NO SIGNIFICANT CHANGES

DISCUSSION

• This study showed that the alpha angle of the volunteers didn't change at the follow-up

 So is Cam a static deformity after the end of the skeletal growth?

Developmental origin

Carsen et al 2014

- 44 volunteers (88 hips); 23 open physes vs. 21 closed physes
- None of the 23 (0%) patients prephyseal closure had cam morphology vs. 14% postclosure
- Daily activity level was higher (p = 0.02) for pts with cam

• Siebenrock et al. 2012

- 37 elite basketball players vs. 38 controls; Age range 9-22 yrs
- Athletes had greater epiphyseal extension than control subjects at all positions
- Epiphyseal extension in the control was greater in the subgroup with a closed physis versus the subgroup with an open physis.

DISCUSSION

- At least other 2 papers studied the remodelling of the osteochondroplasty site after surgery
- No significant changes at a mean 2 years followup
- Other studies showed osteophyte formation around or on the bony prominence but only in patients with previous signs of OA

• CT and MRI for the follow-up \rightarrow possible bias

 Mean follow-up 3.8 years → is it enough to see a statistically significant change?

CONCLUSION

- If Cam-deformity is acquired during growth then after physis closure it is a static deformity
- We would be able to screen the population to identify the patients "at risk" at a precise point in time i.e. *17-18 for males; 16 for females*
- Because most of patients with CAM FAI present with significant acetabular cartilage damage earlier intervention maybe needed

uOttawa

L'Université canadienne Canada's university

THANK YOU

Azienda Ospedaliera Istituto Ortopedico

Initial stability of a new dual mobility cup model: a prospective study compared with European register findings

ANDRÉ FERREIRA & QUATTRO GROUP

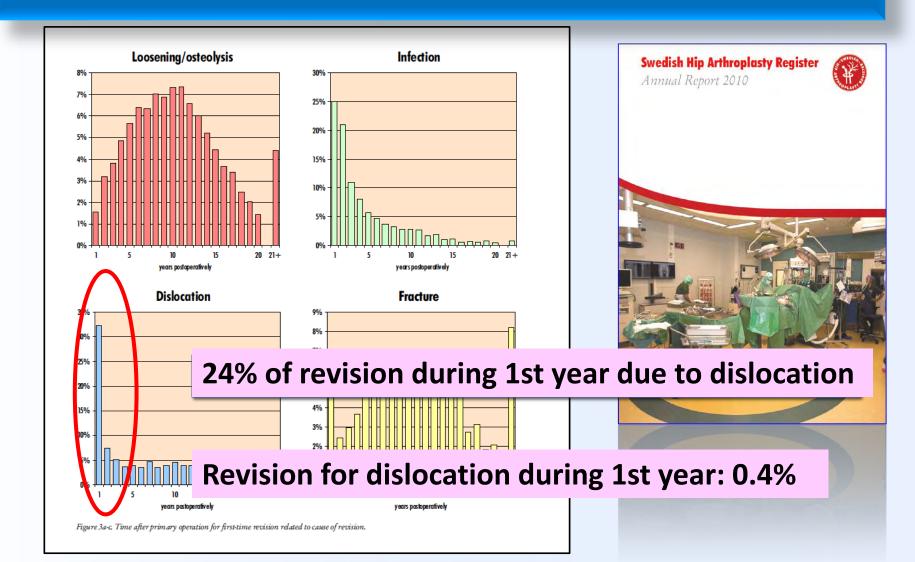
CLINIQUE DU PARC LYON

A.FERREIRA@CLINIQUEDUPARCLYON.COM

WWW.CHIRURGIE-HANCHE-GENOU.FR

DISCLOSURES

Royalties Groupe Lépine


DISLOCATION : the main PROBLEM

- 3 to 8 % in primary THA in literature
- 50% occur during first 3 months
- 75% occur during first year
- => 2/3 closed reduction
 1/3 need revision

SWEDISH HIP REGISTER: Reasons for revision

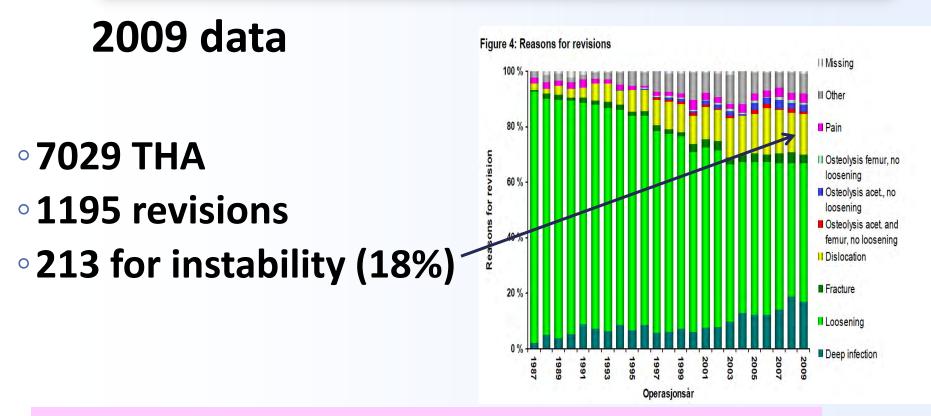
NHS: Reasons for revision

Analysis by time of the 6 main reasons for revision

Years since operation															
		U	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	Count	281	65	102	64	48	27	34	27	16	17	4	11	2	698
	%	19.26	9.31	161	9.17	6.88	3.87	4.87	3.87	2.29	2.44	0.57	1.58	0.29	100
2	Count	60	Y	49	AF.	44	41	36	54	45	45	49	26	9	534
	%	11.24	5.81	9.18	8.43	8.24	7.68	6.74	10.11	8.43	8.43	9.18	4.87	1.69	100
3	Count	30	19	48	42	38	37	38	46	32	28	26	14	2	400
	%	7.50	4.75	12.00	10.50	9.50	9.25	9.50	11.50	8.00	7.00	6.50	3.50	0.50	100
A	Count	67	25	60	A A	04	00	10	4.4	7	0	E	2	0	204

	/0	0.00	0.41	22.UJ	19.17	0.20	0.00	J.IU	0.00	0.00	0.00	1.41	2.00	1.20	100
6	Count	76	22	19	23	13	17	13	6	8	7	9	3	1	217
	%	35.02	10.14	8.76	10.60	5.99	7.83	5.99	2.76	3.69	3.23	4.15	1.38	0.46	100

National Joint Registry


1 = Dislocation, 2 = Loosening acetabular component, 3 = Loosening femoral component. 4 = Deep Infection, 5 = Pain, 6 = Fractured femur

73% of revisions for dislocation, 69% for deep infection,65% for femoral #s and 51% for pain are within 4 years of primary arthroplasty compared to just 35% for femoral and acetabular loosening.

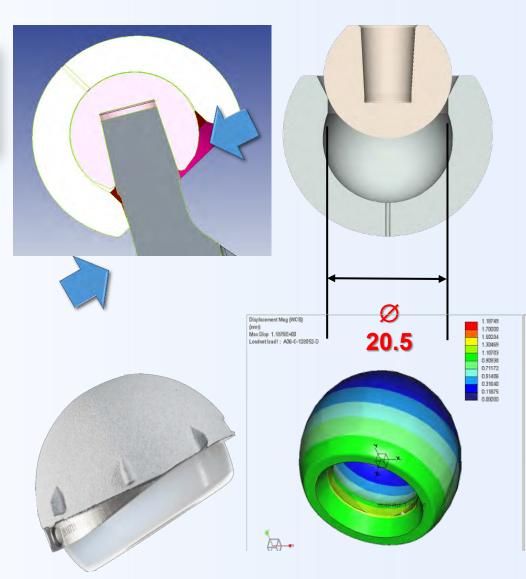
Prosthesis instability: 2.32% of revisions in 1st year

NORWEGIAN JR REPORT 2010: reasons for revision

18% of revision during 1st year due to dislocation

PROSPECTIVE MULTICENTRE STUDY QUATTRO CUP

4 centres 7 senior surgeons May 2012 to October 2013 634 THA Minimum FU: 1 year Average: 1,8 years



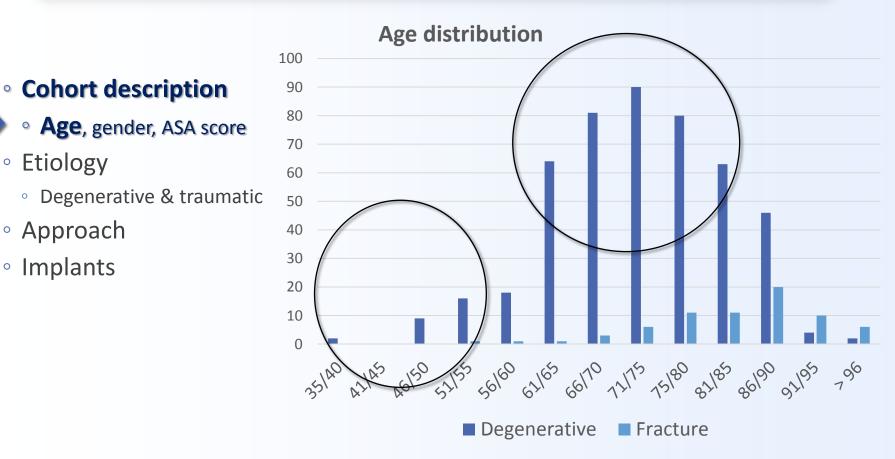
Quattro VPS dual mobility cup

- Third generation of DM
- Cementless cup:
 Cobalt/Chrome
- Primary fixation through
 - 6 equatorial fins
 - ± 4 apical spikes
- Secondary fixat. through
 - bilayer coating
 Porous titanium under-layer of decreasing thickness + HA

Quattro VPS

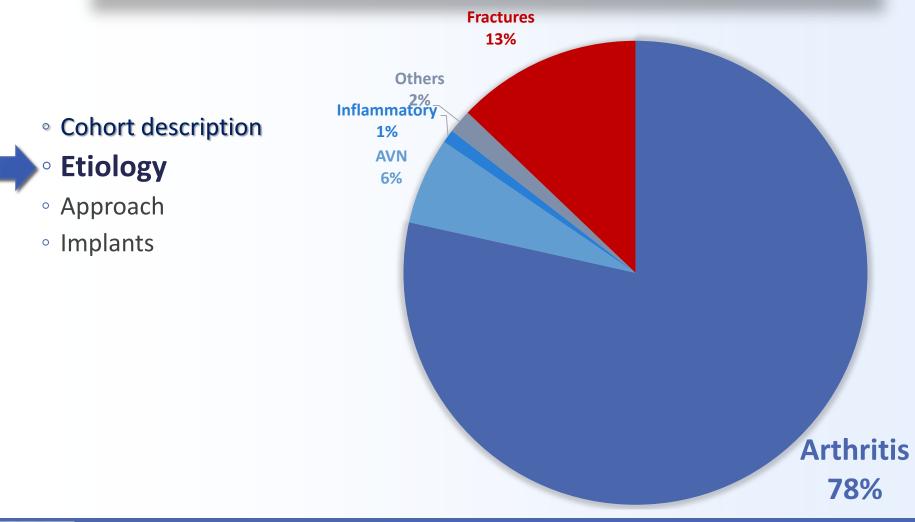
- Inner surface is ultra polished without any hole
- Cup design hemispheric to avoid conflict
- Chrome cobalt to avoid deformation & blocage
- EtO sterilised UHMWPE
- Design of liner (chamfers) reduce contact between the narrowed part and the femoral neck

High covering insert : Under PE elastic limit


Material & Method

Cohort characteristics:

- Age, gender, ASA score
- Etiology
 - Degenerative hip disease
 - fracture


		Global	Degenerative	Fracture
N° cases		634	551	83
gender (% women)		63.4%	61.2 %	77.1 %
Mean age		72.6 (36-99)	71.2 (36-98)	81.7 (51-99)
ASA	I	17.1 %	19.9 %	0 %
	П	61.0 %	65.2 %	33.6 %
	Ш	20.1 %	14.7 %	57.7 %
	IV	0.8 %	0.2 %	4.7 %

0

Material and methods **DEGENERATIVE (551)** Hardinge (ant) Cohort description Harding 82% Age, gender, ASA score fracture (83) e (ant) Etiology • Degenerative & traumatic Posterior Trans-Approach trochant • Implants eric 51% Posterior

0

- Cohort description
 - Age, gender, ASA score
- Etiology
 - Degenerative & traumatic
- Approach

Implants

		Deg	enerative (553)	Fracture (81)
Bearing	M/PE		28,9 %	92,8 %
	C/PE		71,1 %	7,2 %
Head	22 mm		23,7 %	72,5 %
	28 mm		76,3 %	27,5 %
Stem	cemented		21,1 %	18,6 %
	cementless		35,9 %	72,9 %
	Cementless short		43 %	8,6 %

Results

Lost to follow up: 0

	Degenerative	Fracture	
Numbers	552	80	
Dead	0	17	
Lost of view	0	1	
Survivorship	99%	100%	
Revision	2 (infection & groin pain)	0	
Dislocation	0 (0%)	1 (1.3%)	
Treatment		Early dislocation (M1) Closed reduction No recur	

Global dislocation rate: 0.15%

Comparison

Dislocation rate

Prospective series: 0.15%

- No rate in registries
- Berry (JBJS am 2004):
 1.8%
- Caton (Hip int 2004): 3.8%

Instability Revision

- Prospective series: 0%
- 2012 Swedish register: 0.40%
- 2013 NHS register: 2.32%
- 2010 Norwegian report: 3%
- 2013 Australian register: 1.6% < 80y 2% ≥ 80y

Conclusion: Dual Mobility Cup

- Low dislocation rate in a prospective, multi-surgeon study: 0.15%
- Whatever indications age approach
- No revision for instability at 1 year
- Registries data with Standard Cups
 - 0.40 to 3% of revision for instability of all THA
 - 15 to 24% of revision due to instability during 1st year

Third generation of Dual Mobility

proves concept efficacy and benefit in primary THA

To all the victims of attempts....

13 Novembre 2015

To be stronger than barbarism, we must stand up

Dislocation: Diagnosing Instability

Stephen A Jones

Bwrdd Iechyd Prifysgol Caerdydd a'r Fro Cardiff and Vale University Health Board


BHS/SIDA Congress Milan – 2015

Disclosures

- Institution
 - Funding received Depuy, Zimmer Biomet & Lima
- Individual
 - Consultant agreements
 - Zimmer Biomet, Smith & Nephew, Depuy & Lima
 - Design agreements & Royalties
 - Smith & Nephew, Lima & Adler Orthopaedics

Diagnosing Instability

Instability following THA

- Dislocation rate 0.09% to 8%
- Recurrent dislocation rate 16% to 64%
- Recurrence dislocation following revision for instability 27% to 34%

Woo RY, Morrey BF. Dislocations after total hip arthroplasty. JBJS(A) 1982;64: 1295-306.

Natural History of Hip Instability

- Continued sub-optimal result
- Significant risk of continued instability
- Need for revision surgery (>50%)

Outcome of Closed Reduction For Dislocation Following Primary Total Hip Arthroplasty RS Kotwal, M Ganapathi, A John, M Maheson, S Jones Journal Bone & Joint Surgery 2009 Vol 91-B, Issue 3,321-326

Prevention - Optimal index surgery

Long Term Revision Burden for Instability

- Retrospective analysis of **539 THA** under-going revision for instability
 - 35% re-dislocation & 45% re-operation all causes
- Multi-variate analysis risk factors
 - History >2 previous surgeries
 - Use of head size <36mm
 - Cup retention at time of revision

The Cumulative Risk of Re-dislocation After Revision THA Performed for Instability Increases Close to 35% at 15 years Journal of Arthroplasty 30 (2015) 1177-1182 Suenghwan J. Jimenez Almonte J. Sierra R

• Aetiology of Instability.

• Mechanism.

• Time Scale from Index Surgery.

WC – 72yr Male OA following previous acetabular fracture.

<u>Revision Surgery</u> Increased Head Size Increased Neck Length

Revision Surgery Cup Revision Constrained Liner

Revision Surgery

Retained Cup Cemented Liner Large diameter MoM

Why is the THA Unstable ?

AETIOLOGY IS MULTI-FACTORIAL CONSIDERED AS FIVE MAJOR SUB-GROUPS

Patient Factors Surgeon Factors Implant Orientation Implant Design Soft Tissue Factors

Instability - Patient Factors

- Age & Sex.
- Alcoholism.
- Neurological conditions.
 - Previous Hip Trauma
 - Previous Hip Surgery.
- Revision Hip Arthroplasty.
 - Medical Co-morbidly
 - Compliance

Risk Factors – Age & Sex

Data on age as independent risk factor is inconclusive.

Dislocation after total hip arthroplasty. J Am Acad Orthop Surg 2004;12:314-321 M Soong, H Rubash, W Macaulay

• Two large series on gender differences report that women have twice rate of men.

Effect of femoral head diameter and operative approach on risk of dislocation after primary hip arthroplasty. D.Berry et al. JBJS(Am) 2005;87:2456-2463 Late instability following total hip arthroplasty. L Pulido et al Clin Med Res 2007;5:139-142

• Consider advanced age (>80 years) & gender together Reported up to 15% acute & 9% chronic instability

Primary total hip replacement in patients over 80 years of age. JBJS(Br) 1990;72(3):450-2. D Newington, G Bannister, M Fordyce

Risk Factor – Patient Co-morbidity

• Dislocation x10 higher in patients with high ASA scores

Factors predisposing to dislocation after primary total hip arthroplasty: a multivariate analysis. B Jolles et al. Journal Arthroplasty 2002 April;17(3):282-8

NJR Statistics 10th Report

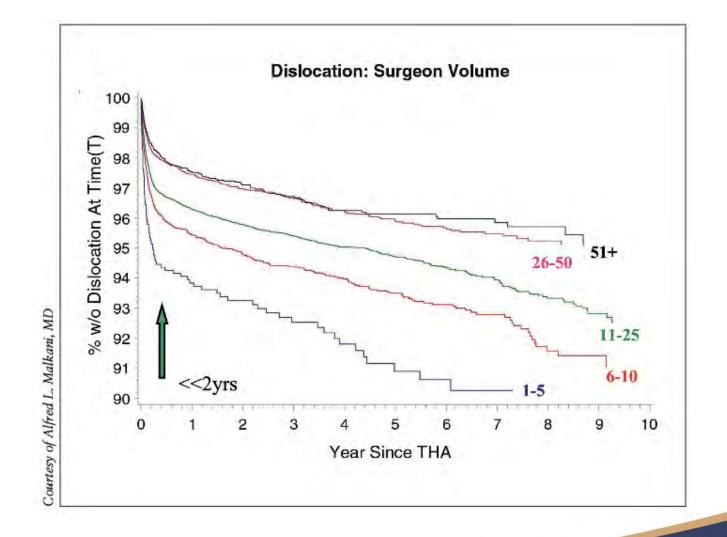
Number of patients undergoing THR who are ASA 1
 2003 = 37% and this had decreased in 2008 = 14%

This group can least tolerate implications of instability

The future for Non-modifiable factors - Risk Stratification

Define specific patient populations Used throughout healthcare - Save lives / time / money

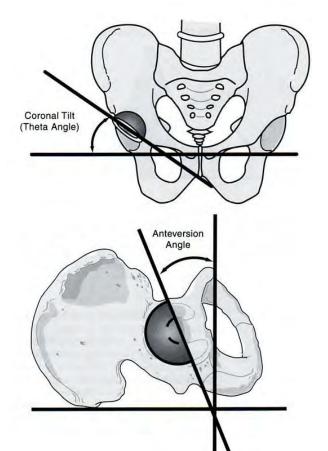
The prevention and treatment of dislocation following total hip arthroplasty: efforts to date and future strategies Stephen A Jones Hip Int 2015; 25(4): 388 – 392.



Instability - Surgeon Factors

- Experience
 - Volume
- Surgical Approach
- Surgical Technique
 - Implant Selection

Surgeon Factors - Volume


Component Position

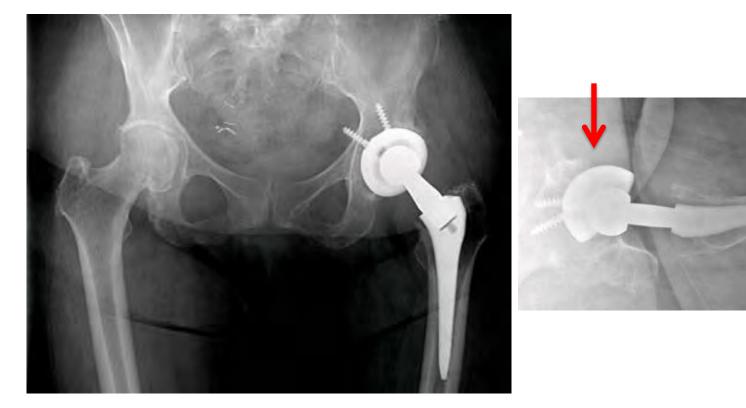
"Safe-zone"

40 +/- 10 degrees abduction 15 +/- 10 degrees anteversion *Lewninneck et al JBJS*(Am) 1978; 60:217.

Six fold reduction in dislocation

Does not prevent it !

"Safe zone" – Outdated Concept


- Only considers radiographic cup position
- Femoral anteversion not considered
- Changes in pelvic orientation with supine, standing, and sitting positions.

Cup Position Alone Does Not Predict Risk of Dislocation After Hip Arthroplasty. Journal of Arthroplasty Vol 30:1 January 2015, Pages 109–113 Esposito C. Gladnick B. Lee Y.

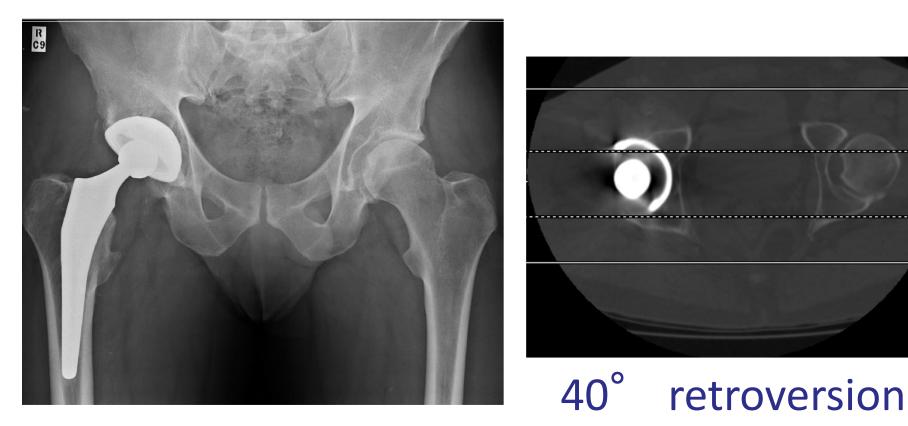
Reinforces the principal that instability following THA is multi-factorial and no implant position guarantees stability.

Radiographic Assessment of THA Component Position

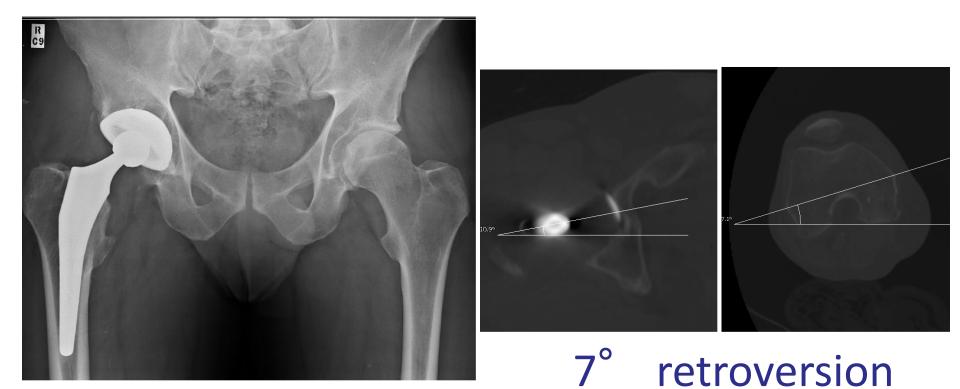
Horizontal Beam Lateral best for anteversion of socket

Component Position – CT Scan

• Key factor is the Accurate assessment of Component Orientation. CT measurement of the accuracy of component version in total hip arthroplasty Wines & McNicol. Journal of Arthroplasty 2006;21:696-702

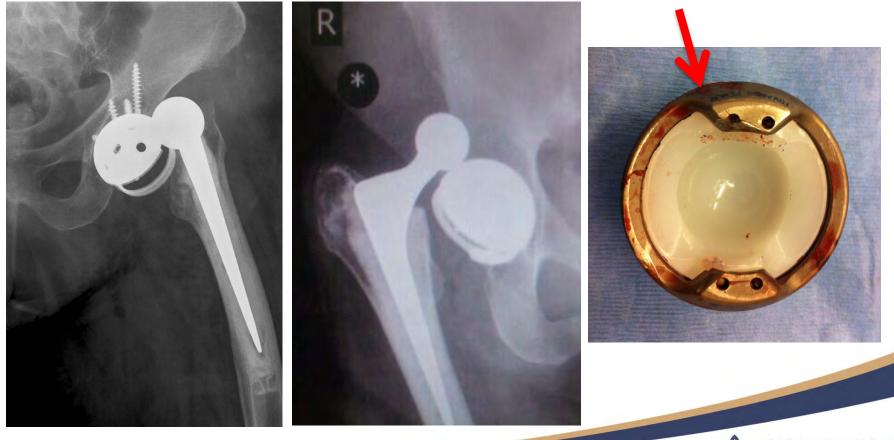


Component Position - Accurate assessment


Component Position - Accurate assessment

Acetabulum

Component Position - Accurate assessment


Solution – Revise Both Components

Constrained Liners – "Overuse Syndrome"

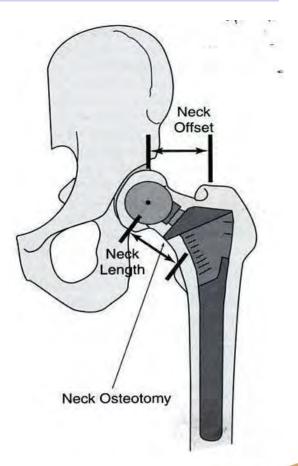
Constrained Liners are NOT a substitute for poor component position !!

Long-term Results of Constrained Liners

- The use of a constrained liner was protective against re-dislocation.
 - However a constrained liner was only effective at preventing re-revision when the cup also exchanged.

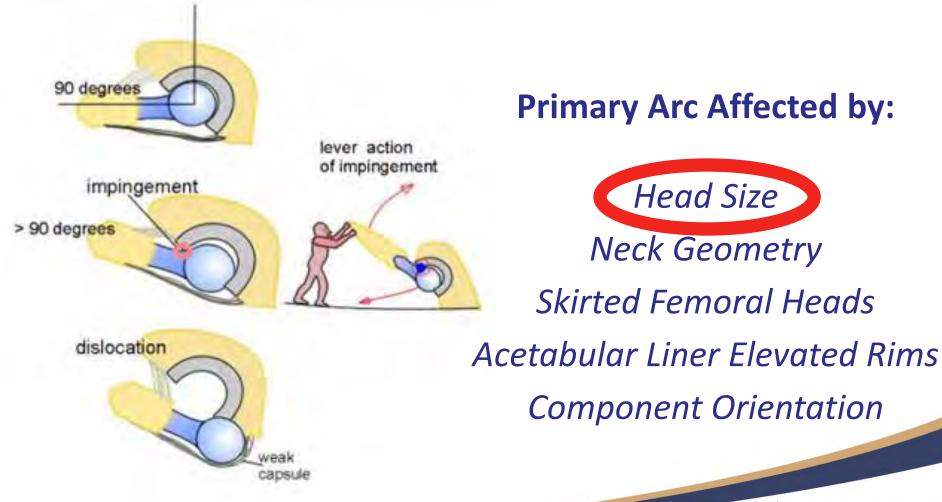
"essential to optimize other factors that may contribute to instability in order to decrease the mechanical failure of constrained liner"

The Cumulative Risk of Re-dislocation After Revision THA Performed for Instability Increases Close to 35% at 15 years The Journal of Arthroplasty 30 (2015) 1177–1182 S. Jo et al.



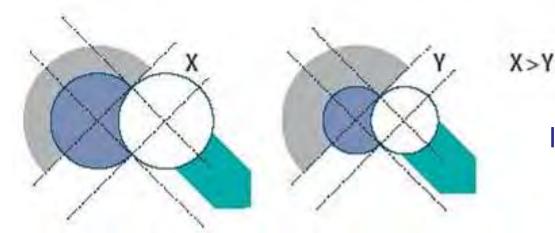
Component Design

Femoral off-set & Neck length.


Determines abductor lever arm

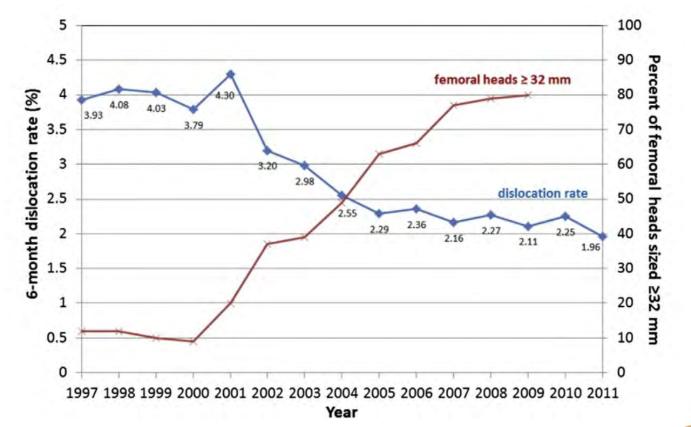
"soft tissue balancing of the hip"

Impingement-Levering Out-Dislocation



Advantages of Large Diameter Heads

Increased ROM greater primary Arc before impingement & levering out.



Increased jump distance

Large Femoral Heads & Dislocation

Indirect Evidence – Observed trends

Dislocation Rates Following Primary Total Hip Arthroplasty Have Plateaued in the Medicare Population The Journal of Arthroplasty 30 (2015) 743–746 Goel et al.

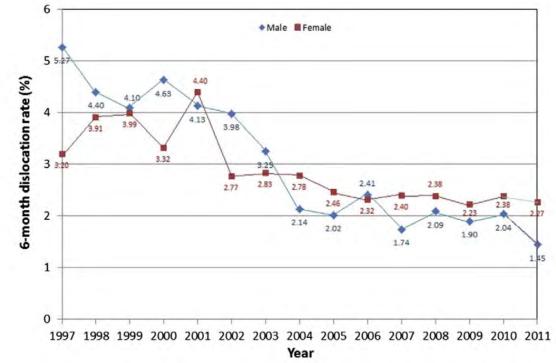
Large Diameter Heads – Level 1 Evidence

• 644 patients in 14 centers undergoing THA

Dislocation 0.8% in 36 mm vs 4.4 % in 28 mm group

Large Femoral Heads Decrease the incidence of Dislocation after Total Hip Arthroplasty; A RCT, Howie DW, Holubowycz OH, Middleton R. JBJS(A) 2012; 94: 1095-1102

184 patients in 7 Centers undergoing Revision THA 1.1% (36 & 40mm heads) versus 8.7% (32mm)


Dislocation in revision THA: Do large heads (36/40mm) result in reduced dislocation rates in a randomized clinical trial.

Garbuz DS et al Clin Orthop Relat Res.

Larger femoral heads & Modern Practice

- 51,901 patients undergoing primary THA
- From 2005-11 dislocation rates plateau in US at 2%.

Dislocation Rates Following Primary Total Hip Arthroplasty Have Plateaued in the Medicare Population The Journal of Arthroplasty 30 (2015) 743–746 Goel et al.

Instability – Soft Tissues Factors

• Abductor failure

Greater Trochanter / Muscle & SGN/ Attachment

Posterior soft tissue envelope

Capsule & SER's

Soft tissue laxity

Local / Generalized

Soft Tissue Factors

HS

Soft Tissue Factors

- Can be difficult to assess
- EUA & Fluoroscopy Screening can be helpful

Treatment – c/f Shoulder

• Static Stabilisers

- Capsule
- Component Orientation
- Component Design
- Dynamic Stabilisers
 - Abductors
 - Integrity & Biomechanics of Greater Trochanter
 - Neuromuscular function

Instability - Mechanism

- Clinical History Provocative Mechanism
 - Key to successful closed reduction
 - Aid understanding of Aetiology
- Major clue to which soft tissues disrupted

Instability - Time Scale from Index Surgery

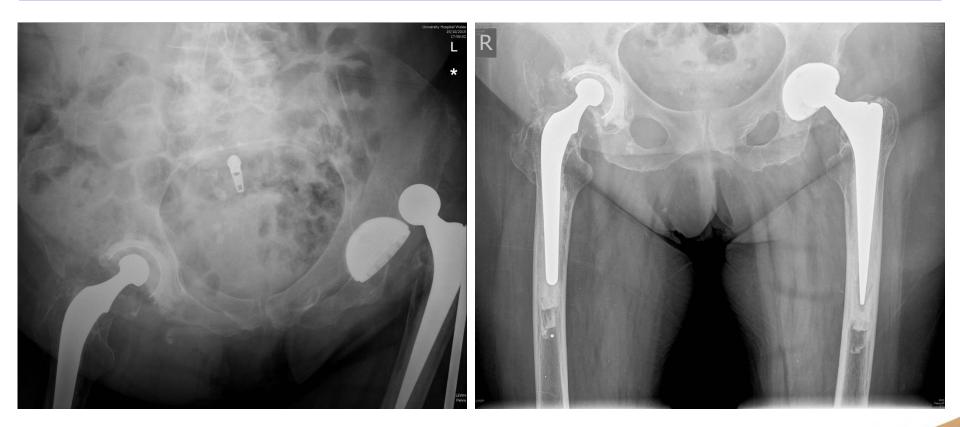
• Majority of early dislocations

- Incomplete healing of soft tissue envelope
- Most common reason is component malposition

Late dislocation

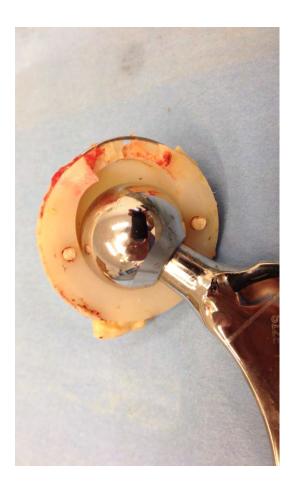
- More often associated with symptoms of subluxation
- Wear & Loosening commonplace
- Don't forget change in patient (eg cognitive/neurological)

Early Dislocation – Socket Malposition



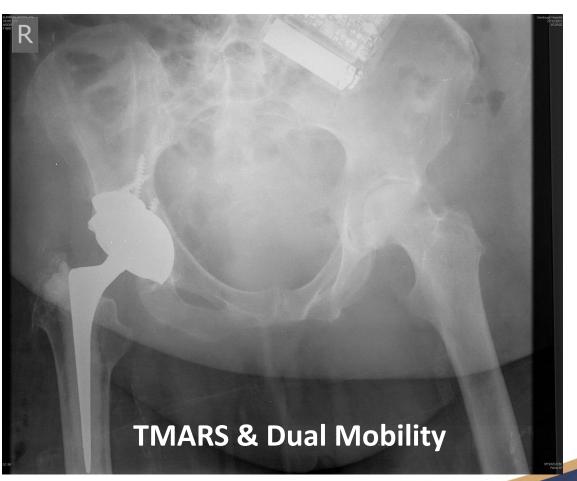
Late Instability – Component Wear

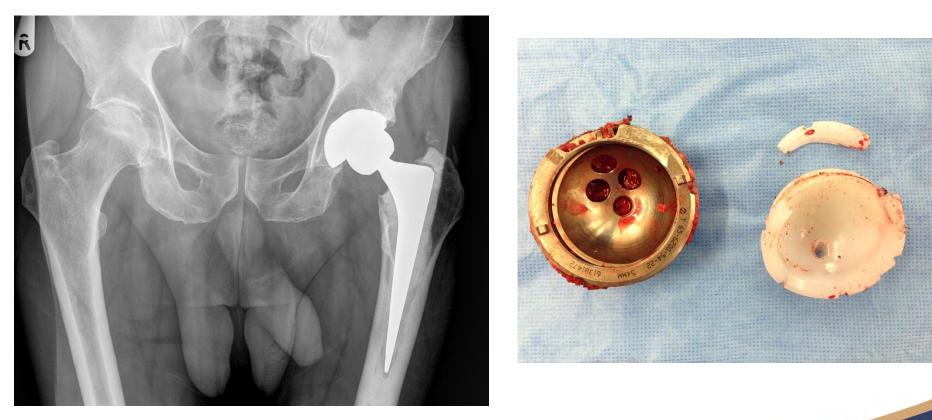
Late Instability – Check radiographs



Late Instability – Soft Tissue Damage

Late Instability – Component Wear & Loosening




Late Instability – Component Loosening & Major Bone Loss

Late Instability – Component Fracture

Bwrdd Iechyd Prifysgol Caerdydd a'r Fro Cardiff and Vale University Health Board

4th Revision Surgery – Planning

Multi-factorial

Patient factors: Compliance & undiagnosed neurological condition Surgeon factors: multiple surgeries but focused on single issue Implant Orientation: Stem not been addressed Implant Design: Maximize Head-Neck ratio Soft Tissue factors: result > 30 dislocations

Bwrdd lechyd Prifysgol Caerdydd a'r Fro Cardiff and Vale University Health Board

4th Revision Surgery - The Solution

Component Revision Cup & Stem Constrained Bearing 36mm head Slender neck Trochanteric advancement

8 Year F/U No Further Instability

Diagnosing Instability

Patient Factors Surgeon Factors Implant Orientation Implant Design Soft Tissue Factors

Accurate Assessment is the key !

Bwrdd Iechyd Prifysgol Caerdydd a'r Fro Cardiff and Vale University Health Board

INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA 26-27 NOVEMBER 2015 MILAN, ITALY

THA Dislocation: Diagnosis and Prevention

D'Angelo F., Serrao L.

Department of Orthopedics and Traumatology *University of Insubria - Varese* Director: Prof. P. Cherubino

Dislocation

Complete loss of contact between the femoral head and acetabular component that requires intervention for reductions

Classification

- <u>Time of dislocation</u>
 - Early (Within the first 3 months)
 - Late (5 or more years later than surgery)
- <u>Recurrency</u>
 - Single dislocation
 - Recurrent dislocation
- <u>Direction</u>
 - Anterior
 - Posterior
 - Superior

Epidemiology

- Second cause of revision surgery
- Various Rates of dislocation
 from 0,3% to 10%
- Higher rates in revision surgery (up to 28%)
- Late dislocation is associated with increased risk for recurrency (odds 5) and with implant loosening

Risk Factors

Patient's Factors

- Surgery Factors
 - Surgical approach
 - Implant Positioning

Patient's Factors

	Parameter	OR	P-value	Source
Age	>70 y vs <70y	1,2	0,05 Berry et al., 2005	
	>80y vs <80	1,5		Hernigou et al., 2013
Gender	Female vs male	1,2	<0,05	Berry et al.,2005
		2,1		Hernigou et al., 2013
Weight	BMI >30	3,7	<0,05	Azodi et al., 2009
		2,3	<0,05	Lubbekke et al.,2007
Comorbidities	ASA 3 o 4	10	<0,05	Jolles et al., 2002
Abductor deficency	Trendelemburg +	2,67	<0,05	Wetters et al., 2013

Patient's Factors

- Previous Surgery
- Pre-operative diagnosis and range of motion
 - Arthroplasty on neck Fracture

Authors	OR	P-value
Berry et al. , 2005	1,8	<0,001
Hailer et al. 2012	3,9	<0,001
Conroy et al, 2008	2,03	<0,001

OR for THA dislocation in patient with pre-operative diagnosis of femoral neck fracture

Surgical Factors

- Surgeon Experience
- Surgical Approach
- Component position
- Impingement of bony and soft tissues

Surgeon Experience

	Surgeon Volume	Dislocation		
Hospital Volume		Rate	Adjusted Odds Ratio† (95% Confidence Interval)	
26-50	1-5	3.7%	1.0	
	6-10	3.0%	0.83 (0.66, 1.05)	
	11-25	2.5%	0.69 (0.54, 0.89)	
	26-50	2.9%	0.84 (0.53, 1.31)	
	>50	1.3%	0.34 (0.10, 1.13)	
51-100	1-5	3.2%	1.0	
	6-10	3.4%	1.1 (0.81, 1.45)	
	11-25	2.2%	0.70 (0.52, 0.95)	
	26-50	2.1%	0.65 (0.46, 0.92)	
	>50	1.1%	0.33 (0.19, 0.59)	
>100	1-5	2.5%	1.0	
	6-10	2.5%	1.2 (0.57, 2.45)	
	11-25	2.6%	1.2 (0.61, 2.20)	
	26-50	2.6%	1.2 (0.68, 2.20)	
	>50	1.7%	0.95 (0.51, 1.77)	

*The results were restricted to hospitals in which more than twenty-five elective primary total hip replacements were performed in Medicare beneficiaries from July 1995 through June 1996. †Each odds ratio is adjusted for gender, age, comorbidity, Medicaid eligibility, and arthritis diagnosis.

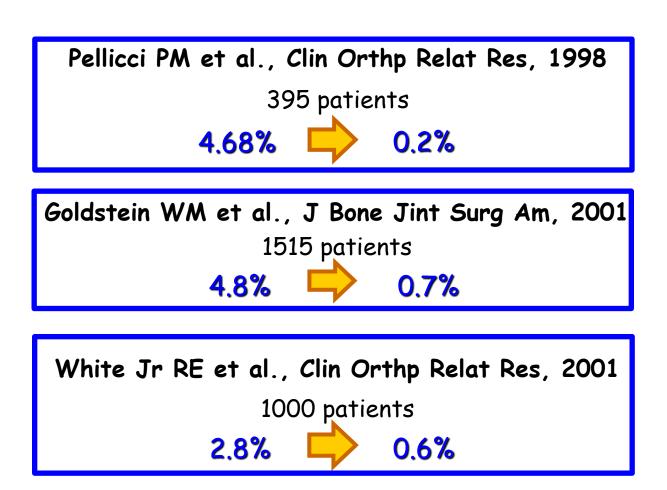
Katz et al. Association Between Hospital and Surgeon Procedure Volume and Outcomes of Total Hip Replacement in the United States Medicare Population. The Journal of Bone and Joint Surgery-American Volume Issue: Volume 83-A(11), November 2001, pp 1622-1629

Surgical Approach

One of the most controversial factor influencing hip stability after surgery

Masonis JL et al., Clin Orthop Relat Res, 2002

Surgical approach	Rate of dislocation
Transtrochanteric	1.27%
Anterolateral	2.18%
Direct lateral	0.55%
Posterior with capsular repair without c. repair	3.23% 2.03% 3.95%



Author/Reference	Number of Primary THA	Approach/THA	Dislocation
Eftekhar ¹¹	1560	TT—1560	0.5%
Fackler and Poss ¹³	1224	Posterior*-1224	1.8%
Roberts et al ³³	175	Posterior—100	4.0%
		Anterolateral-75	1.3%
Woo and Morrey ³⁸	2459	TT—1241	2.2%
		Posterior—588	5.6%
		Anterolateral-660	2.2%
Vicar and Coleman ³⁷	269	TT—136	2.2%
		Posterior*-42	9.5%
		Anterolateral-91	2.2%
Frndak et al ¹⁴	50	Lateral—50	2.0%
Horwitz et al ²³	100	TT—51	0%
		Lateral—49	0%
Turner ³⁵	477	Posterior*-477	3.98%
Moskal and Mann ²⁹	306	Lateral-306	0%
Pellicci et al ³¹	519	Posterior*-519	0.2%
	555	Posterior—555	4.68%
Mallory et al ²⁷	1518	Lateral—1518	0.79%
Woolson and Rahimtoola ³⁹	315	Posterior-315	4%
Yuan and Shih ⁴⁰	2161	Posterior-2161	3.29%
Demos et al ⁸	1515	Lateral—1515	0.4%
Totals	13,203	TT—2988	1.27%
		Anterolateral-826	2.18%
		Lateral—3438	0.55%
	1	Posterior (all)—5981	3.23%
		Posterior—3719	3.95%
		Posterior*-2262	2.03%

Masonis et al. Surgical Approach, Abductor Function, and Total Hip Arthroplasty Dislocation, CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2002, N° 405, Pag 46-53

Surgical Approach

Influence of postero-lateral capsular repair on dislocation rates in posterior approach

Surgical Factors

Implant Positioning

Lewinnek's Safe Zone: – Abduction 30°-50°

- Anteversion 5-25°

Anteversion 10-25°

Redefining the Acetabular Component Safe Zone for Posterior Approach Total Hip Arthroplasty

Jonathan R. Danoff, MD, Jacob T. Bobman, BS, Gregory Cunn, MD, Taylor Murtaugh, BS, Prakash Gorroochurn, PhD, Jeffrey A. Geller, MD, William Macaulay, MD

Center for Hip & Knee Replacement, Department of Orthopaedic Surgery, New York Presbyterian Hospital/Columbia University Medical Center, New York, New York

Journal of Arthroplasty ,sept 2015

Surgical Factors

Implant Positioning

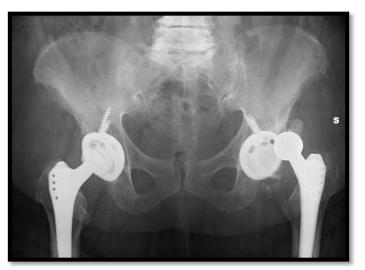
Is THA dislocated?

What Kind of dislocation is it?

Why THA dislocated?

Why THA Dislocated?

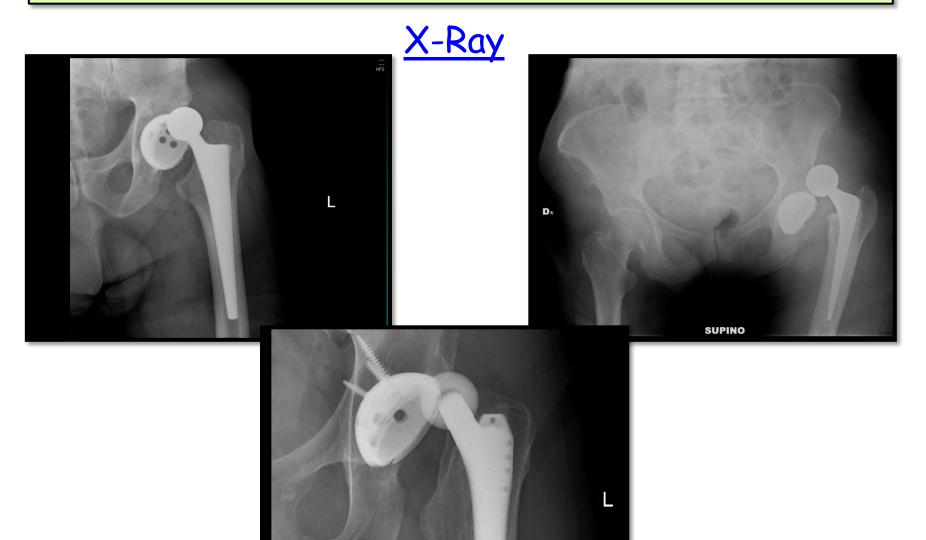
- Trauma
- Patient's Movements
- Component Malpositioning
- Soft-tissue Imbalance
- Implant Impingement
- Implant loosening



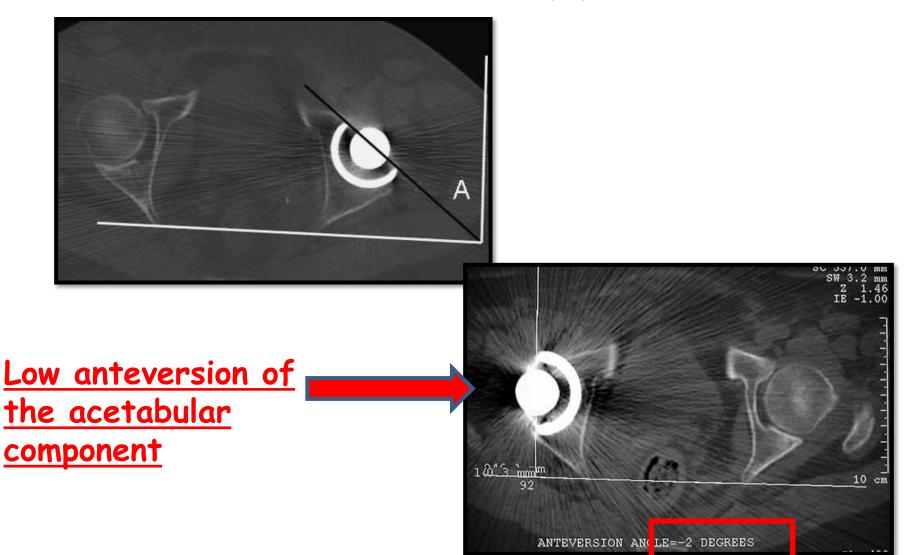
Anamnesis

Clinical Exam

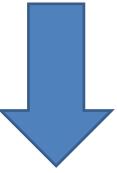
Imaging

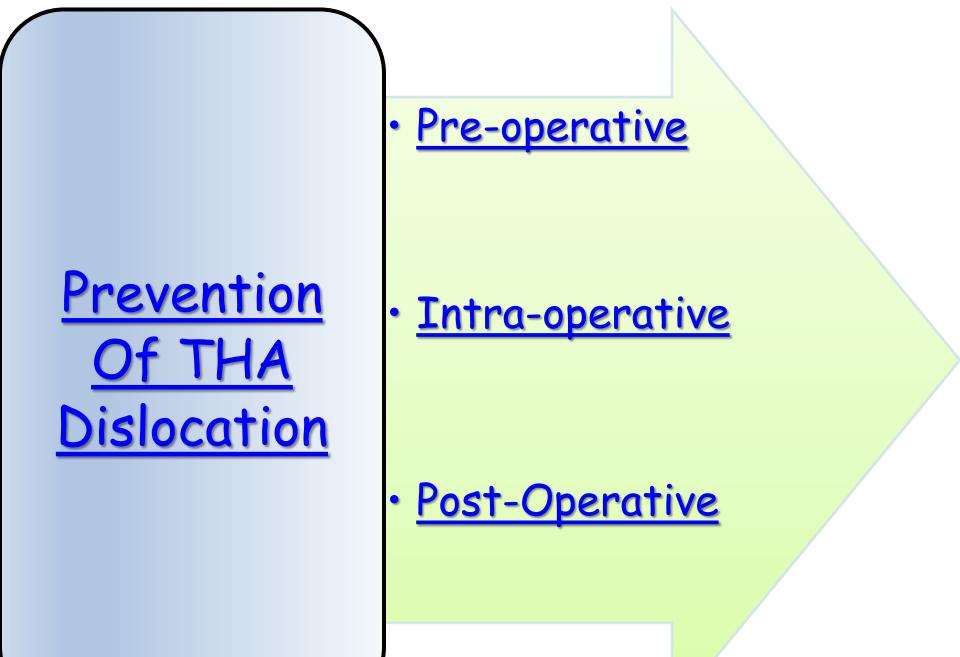

Anamnesis

- Searching for Patient's Risk Factor
- History of dislocation
- Number of dislocation
- Time from surgery



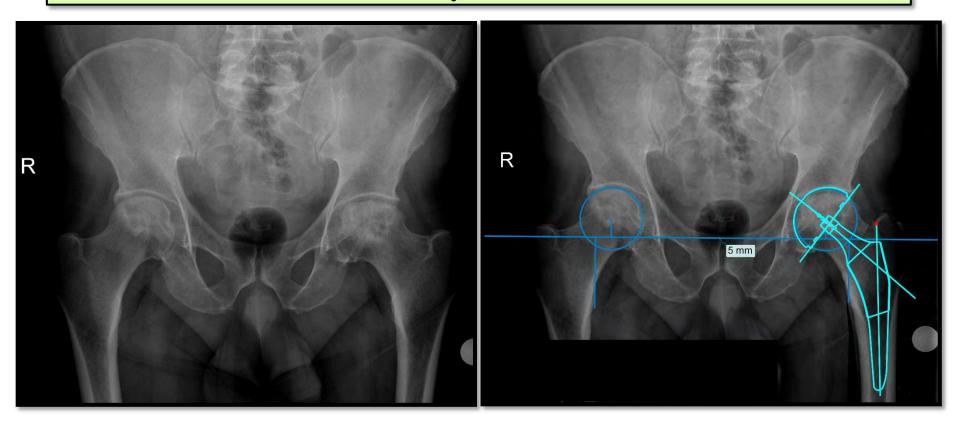
<u>Clinical Exam</u>

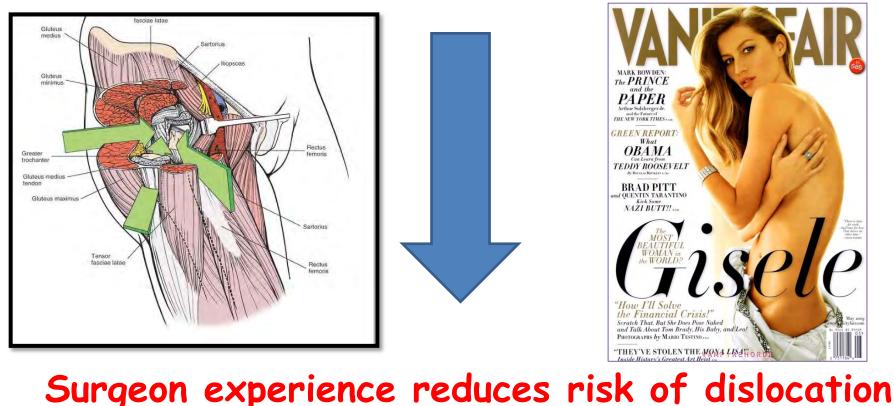

- PAIN
- Flexion, adduction and internal Rotation (more frequent)
- Flexion, abdction and external rotation (rare)
- Possible Neurologic lesion (Sciatic Nerve)
- Scar analysis → <u>Identify surgical approach</u>
- Legs lenght difference
- Abductor strenght


Tc -> To evaluate cup positioning

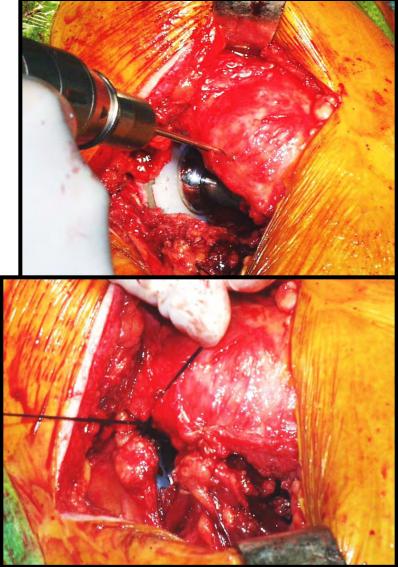
What's the best treatment for THA Dislocation?

Pre-Operative


Identify patient's risk factors and select the best implant


Pre-Operative

Pre-operative planning: restore centre of rotation and femoral offset:

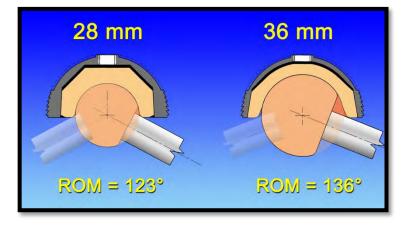

- Minimize Bone impingment
- Restore correct soft tissue tension

<u>Surgical Approach</u> THE BEST APPROACH IS THE MOST FRIENDLY FOR SURGEON

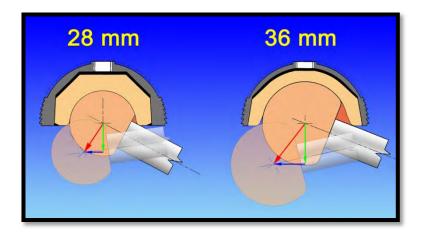
Performing a <u>POSTERO-</u> <u>LATERAL APPROACH</u>, it is mandatory to repair the posterior capsule and the external rotator tendons

Implant Selection

Head size
Elevated rim liner
Dual Mobility Cup



Femoral Head Size


The Biggest the best?

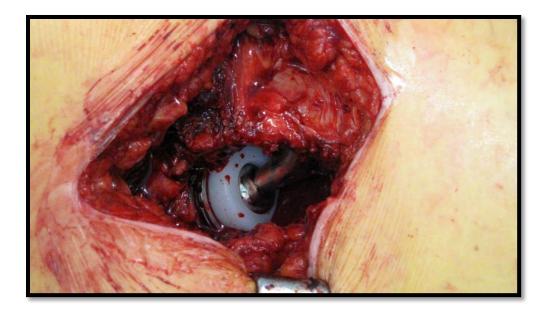
Higher range of motion
Higher Jumping distance

Better patient satisfaction

Elevated rim liner

- Improved stability in one direction
- Possibile correction of anteversion error
- Surgeon safety

- Risk of impingement
- Decrease arc of motion
- Increase polyethylene wear and debris


Dual Mobiliy Cups

Low Rate of Dislocation of Dual-mobility Cups in Primary Total Hip Arthroplasty


Antoine Combes MD, Henri Migaud MD, Julien Girard MD, PhD, Alain Duhamel PhD, Michel Henri Fessy MD, PhD

Clinical and orthopaedics related resource, 2013

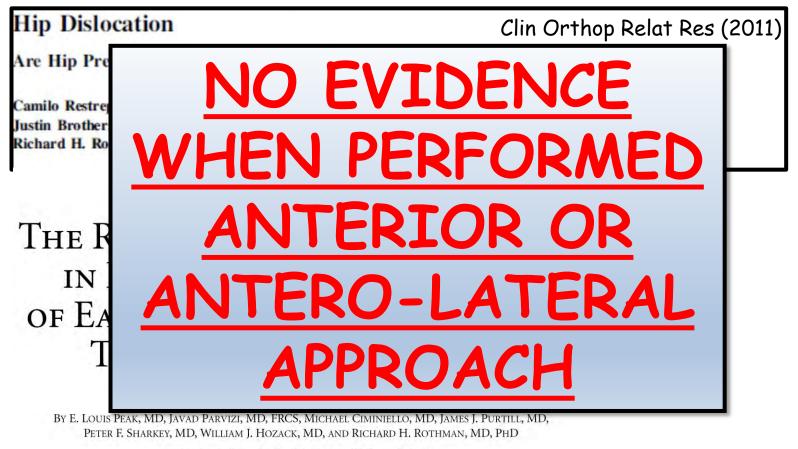
Intra-Operative

Remove all possibile source of impingement, bone or soft tissue

Post-Operative

TA BO

11


- Patient's education
 - Pillows

High Chairs and Toilet Seats

Limited ROM

Post-Operative

Are restrictions really necessary?

Investigation performed at the Department of Orthopaedic Surgery, the Rothman Institute of Orthopaedics at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

Take Home Massage

- THA dislocation is the second cause of revision surgery
- Diagnosis is quite easy, but it's important to understand why an implant dislocated
- Best treatment is PREVENTION
- There's no one method better than the other, but there is the better method for the specific patient.
- Key points of prevention are the best implant selection and the correct positioning of the implant restoring the best anatomy for the patient

Thanks

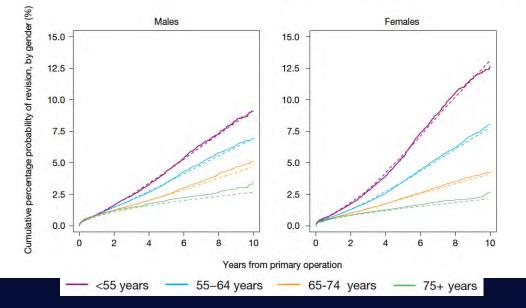
INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA

Assessment of the relationship between pelvic tilt and functional acetabular position with EOS 2D/3D technology

<u>Loppini M.</u>, Caldarella E., Della Rocca A., Astore F., Traverso F., Mazziotta G., Grappiolo G.

Department of Orthopaedic and Trauma Surgery, Hip Diseases and Lower Limb Replacement Unit, Humanitas Research Hospital, Milan, Italy

Introduction: epidemiology


In 2013, the overall hip replacement surgeries were 97.399:

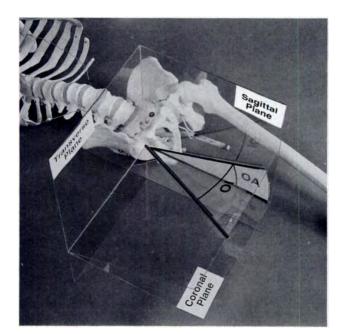
- 89.150 (91.5%) primary THA
- 8.249 (8.5%) revision surgery

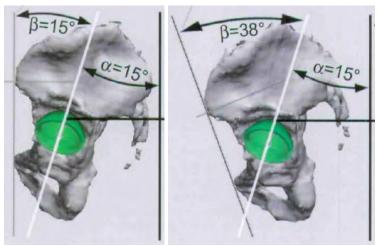
Introduction: causes of revision

Time from primary operation	Patient-	Number of revisions per 1,000 patient-years for:						
	years - at risk (x1,000)	Pain	Dislocation/ subluxation	Infection	Aseptic loosening	Lysis	Periprosthetic fracture	Implant fracture
<1 year	497.6	0.85 (0.77-0.94)	(2.32) (2.19-2.45)	1.28 (1.18-1.38)	1.28 (1.18-1. <u>3</u> 8)	0.10 (0.07-0.13)	1.49 (1.38-1.60)	0.27 (0.22-0.31)
1-3 years	756.8	1.25 (1.17-1. <u>33</u>)	0.66 (0.61-0.72)	0.87 (0.80-0.93)	1.38 (1.30-1.47)	0.21 (0.18-0.25)	0.29 (0.26-0.33)	0.14 (0.12-0.17)
3-5 years	469.0	(1.66-1.90)	0.55 (0.48-0.62)	0.58 (0.51-0.65)	1.48 (1.38-1.60)	0.40 (0.34-0.46)	0.39 (0.34-0.46)	0.12 (0.09-0.16)
5-7 years	227.8	(1.79-2.15)	0.58 (0.48-0.68)	0.44 (0.36-0.53)	(1.59-1.93)	0.56 (0.47-0.66)	0.54 (0.46-0.65)	0.17 (0.12-0.23)
>7 years***	75.1	(1.44-2.04)	0.75 (0.57-0.97)	0.39 (0.27-0.56)	(1.59-2.21)	0.84 (0.65-1.07)	0.48 (0.35-0.66)	0.15 (0.08-0.26)

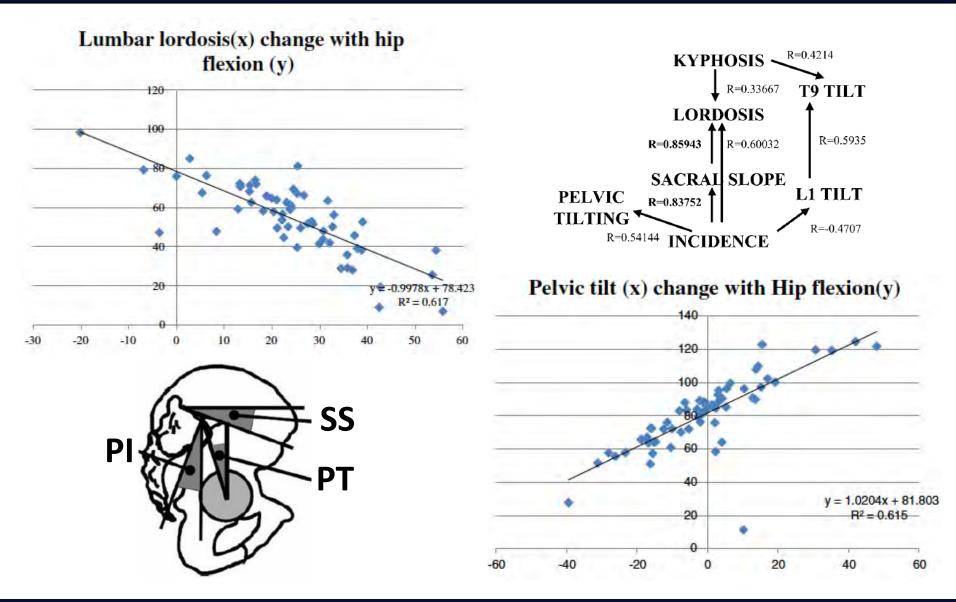
National Joint Registry www.njrcentre.org.uk Working for patients, driving forward quality

NJR

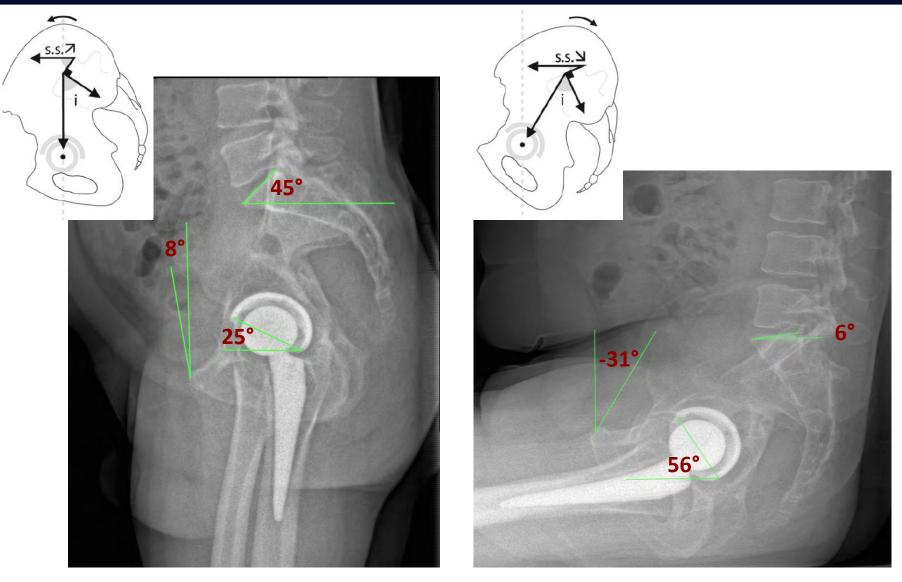

Introduction: acetabular orientation


The "safe" range for cup orientation:

- Inclination of 40° ± 10° (AI)
- Anteversion of 15° ± 10° (AA)


For every 5° of change in the pelvic tilt:

- anteversion changes 4°
- inclination changes 1.5°



Introduction: spino-pelvic biomechanics

Legaye J, Duval-Beaupere G. Sagittal plane alignment of the spine and gravity: a radiological and clinical evaluation. Acta Orthop Belg. 2005;71(2):213-20. Stephens A et al. The kinematic relationship between sitting and standing posture and pelvic inclination and its significance to cup positioning in total hip arthroplasty. Int Orthop. 2015;39:383–388.

Introduction: spino-pelvic biomechanics

Objectives

- To investigate the variation of pelvic tilt after THA in standing and sitting position.
- To investigate the relationship between APP angle and SS in standing and sitting position.
- To investigate the relationships of APP angle and SS with postoperative AI and AA in standing and sitting position.



Patients

- 50 consecutive patients (M:F=28:22)
- Average age of 59 years (44 78)
- Primary THA between November
 2014 and February 2015
- Posterior-lateral approach; femur first technique

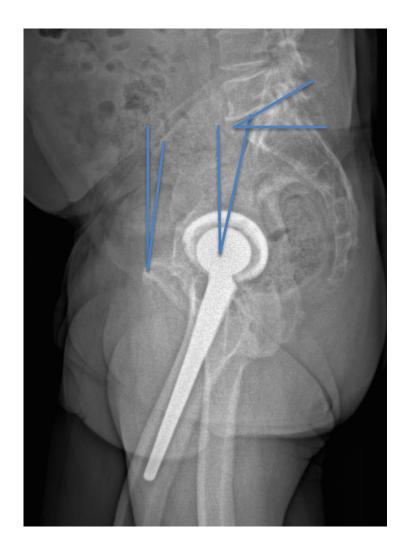
PREOPERATIVE DIAGNOSIS	N° of HIPS (N=50)
Osteoarthritis	35 (73%)
Mild hip dysplasia	9 (16%)
Avascular necrosis	4 (7%)
Slipped Capital Femoral Epiphysis	2 (4%)

Exclusion criteria

- Partial or total THA revision
- THA associated with other procedures
 - (i.e. femoral osteotomy)
- Previous pelvic and/or femoral osteotomy
- Previous pelvic and/or femoral fractures
- Severe hip dysplasia (Crowe III or IV)
- Primitive or metastatic tumors of hip joint
- Previous spine and/or sacroiliac joint instrumentation
- Previous or current hip joint infection

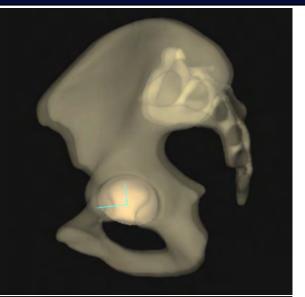
Methods: radiographic assessment EOS 2D/3D radiology system

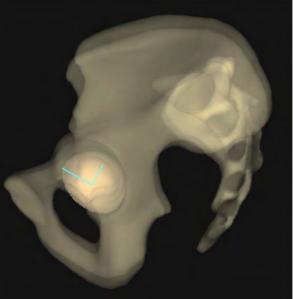
- Scan of the whole body in the same image
- Patient is in an upright weightbearing position
- AP and lateral pelvic acquisitions in the standing and sitting positions
- Pelvic parameter measurements are adjusted for rotations of the pelvis in the axial plane
- 3D reconstruction of bone segments
- Lower radioation doses

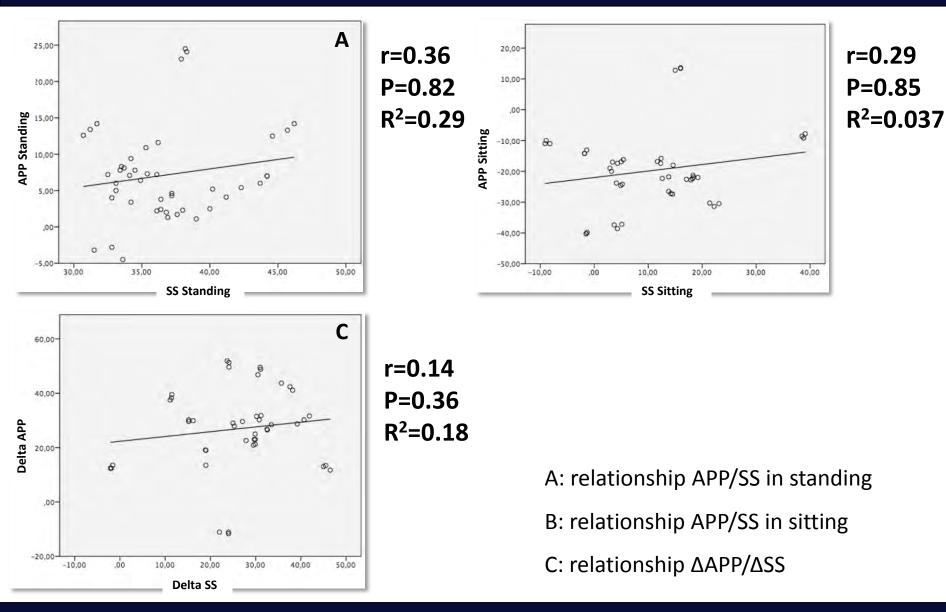

Faria R et al. The EOS 2D/3D X-ray imaging system: a cost-effectiveness analysis quantifying the health benefits from reduced radiation exposure. Eur J Radiol 2013;82(8):e342-9.

Than P et al. Geometrical values of the normal and arthritic hip and knee detected with the EOS imaging system. Int Orthop. 2012;36(6):1291-7.

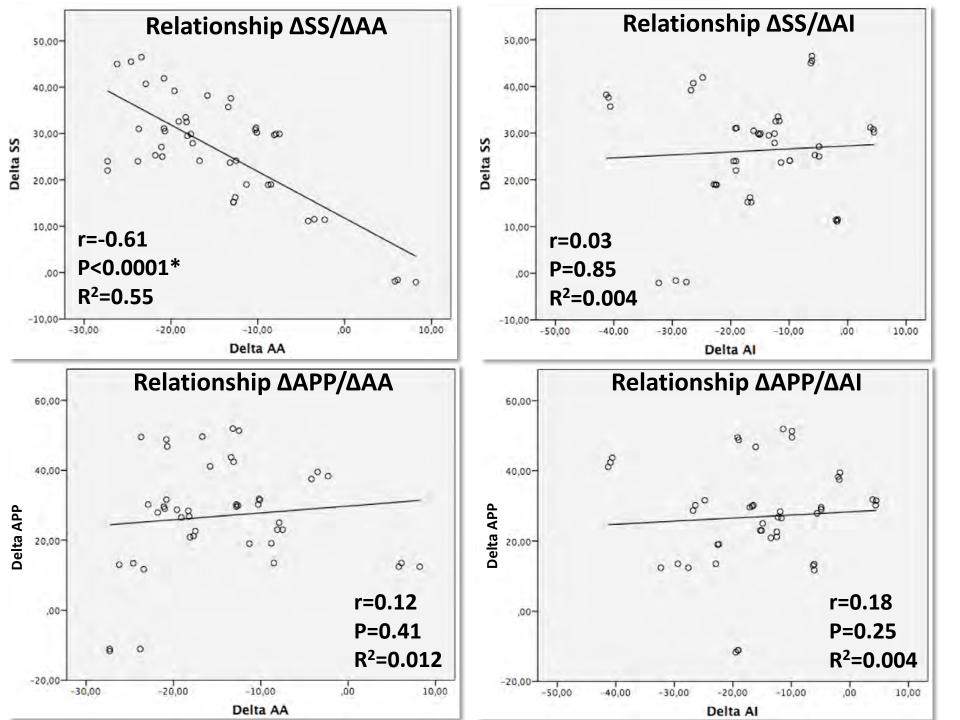
Methods: radiographic assessment


Pre-op and 3 months after surgery assessment:


- Anterior pelvic plane angle (PPA)
- Pelvic tilt angle (PT)
- Sacral slope (SS)
- 3 months after surgery:
- Acetabular anteversion
- Acetabular inclination


Results

	Pre-op	Post-op	P value
SS standing	37.9° (6.3)	36.6° (4.2)	0.25
SS sitting	10.2° (9.2)	10.4° (12.3)	0.38
Delta SS	27.7° (10)	27.3 (12.4)	0.42
PT standing	7.5° (7.2)	9.9° (5.5)	0.03 *
PT sitting	37.8° (8.2)	38.1° (9.9)	0.39



Results

Results

N	AA Standin	AA Sitting	Al Standin	AI Sitting			
	g	201	g				
SS Standing	r = 0.03 P = 0.8 R ² = 0.001		r = -0.07 P = 0.63 R ² = 0.15	6			
SS Sitting		r = -0.15 P = 0.3 R ² = 0.09		r = -0.3 P = 0.04* R ² = 0.06			
APP Standing	r = -0.35 P = 0.04* R ² = 0.05		r = 0.04 P = 0.79 R ² = 0.15				
APP Sitting		r = 0.11 P = 0.48 R ² = 0.04	C B J	r = 0.18 P = 0.24 R ² = 0.003			

Conclusions

- Pelvic parameters do not significantly change 3 months after THA in standing and sitting positions.
- There is no relationship between values of APP angle and SS before and after surgery in standing and sitting positions.
- Changes of SS between standing and sitting position significantly correlated with changes of AA.
- Preoperative EOS 2D/3D measures the functional pelvis orientation according to the spine sagittal balance for each patient in standing and sitting position.

Future perspectives

- SS expresses pelvic orientation taking into account the patient-specific biomechanics of spino-pelvic unit.
- Functional cup orientation should be preoperatively planned basing on SS.
- Future navigation systems should take into account the patient-specific relationship between SS and APP angle to identify on the APP the functional cup position according to SS value.

mattia.loppini@gmail.com @LoppiniMattia

UNIVERSITA' DEGLI STUDI MILANO BICOCCA ca Ortopedica e Scuola di Specialità in Ortopedia Azienda Ospedaliera S. Gerardo - Monza Dir.: Prof. Giovanni Zatti INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA 26-27 NOVEMBER 2015 MILAN, ITALY

Dual mobility sockets in patients with high risk of dislocation

G.Gallinari, R. Sotiri, A. Rossi, D. Munegato, G.Zatti

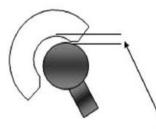
Milan – November 26th, 2015

THA instability

 "Unpleasant" complication for the patient and the surgeon Third cause of revision hip surgery (11.9%)
 The Swedish Hip Arthroplasty Register, Annual Report 2012 Kärrholm, G Garellick, C Rogmark, O Rolfson

Number of reoperations per reason and year primary THRs performed 1979–2012								
Reason for reoperation	1979-2007	2008	2009	2010	2011	2012	Total	Proportion
Aseptic loosening	20,080	1,004	1,116	1,068	988	968	25,224	55.1%
Deep infection	3,649	405	431	420	468	522	5,895	12.9%
Dislocation	4,033	302	287	299	252	278	5,451	11.9%
Fracture	2,617	220	231	255	230	266	3,819	8.3%
2-stage procedure	1,476	73	97	103	97	83	1,929	4.2%
Technical error	955	43	58	61	69	64	1,250	2.7%
Miscellaneous	951	21	35	31	36	45	1,119	2.4%
Implant fracture	477	18	38	22	32	27	614	1.3%
Pain only	345	20	15	18	17	28	443	1.0%
Sekunday infection	5	0	0	0	1	0	6	0%
Missing	35	1	0	0	1	2	39	0.1%
Total	34,623	2,107	2,308	2,277	2,191	2,283	45,789	100%

THA dislocation Risk factors


patient specific

- SN
- O Gender (F > M)
 O Age (>75 ys)
 O Muscolar deficiency (abductor muscles)
 O Neuromuscular deseases
 O Laxity
 O Undisciplined patient (confused, alcoholic)
 O Pre-op diagnosis of femural fracture
 O ASA classification >3

45°Cup Abduction

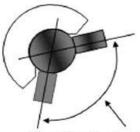
Vertical Head Displacement Required for Dislocation

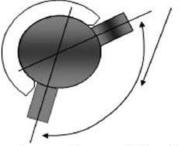
90°Cup Abduction



THA dislocation Risk factors

Releted to operative variables


- **O** Posterolateral approach
- O Surgeon's experience
- **O** Implant positioning
- **O** Neck/Head diameter
- **O** Offset restoration
- O Revision surgery

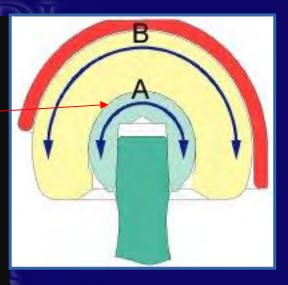


THA dislocation Risk factors

Small Femoral Head

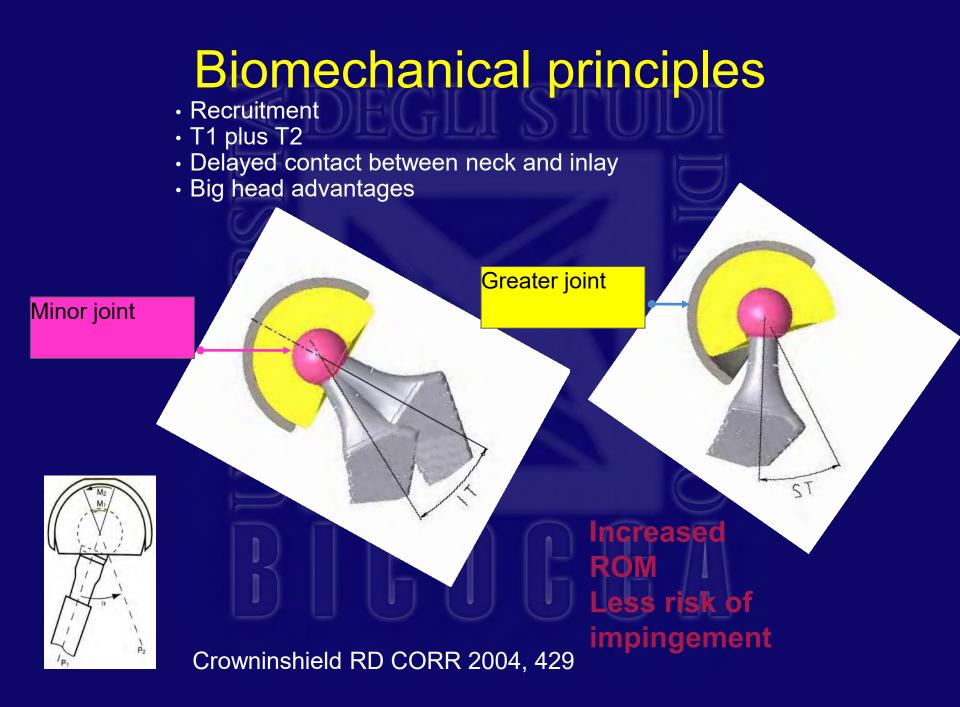
Prosthetic Impingement Free Range of Motion

Large Femoral Head


Implant characteristics

OProsthetic head dimension
OHead / neck ratio
ONeck section
OInlay's characteristics
OInlay consumption
OImpingement

Dual mobility

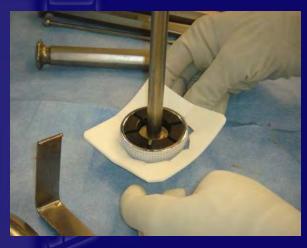

Dual Mobility Mobility A Mobility B Socket

Increased stability plus greater range of movement by the application of two biomechanical principles

Biomechanical principles Increased jump distance AB = less risk of dislocation (AB>27) mm) Α Jump distance (mm) 27.2 30 24 21.4 20 12 10 0 DMS Chamley Tripolar Durom 53/47 52/41 56/46

Our experience

86 dual mobility socket (unconstrained tripolar implants)

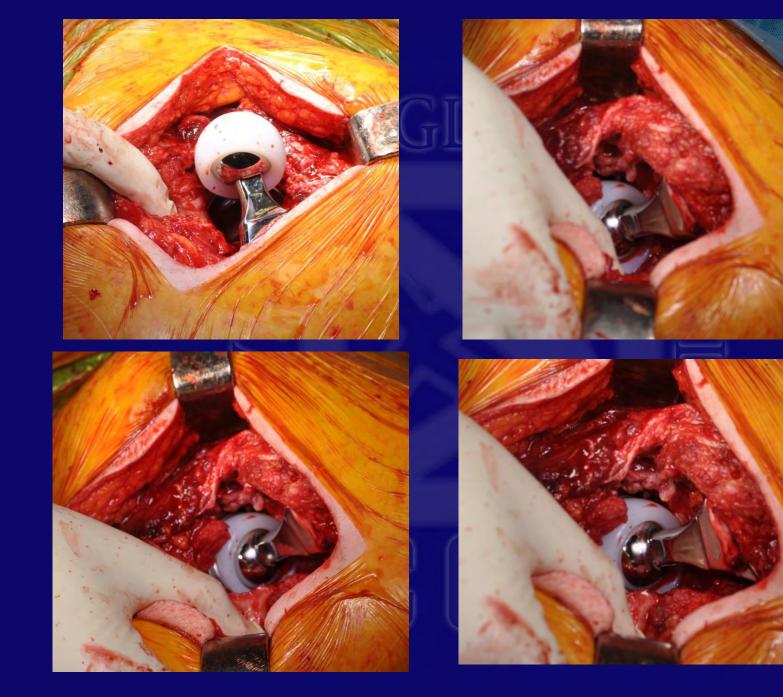

48 uncemented38 cemented

37 M e 49 F

(48 femural neck fractures, 30 coxarthrosis,8 revision hip surgery)

Cemented stem in 40 cases Uncemented stem in 46 cases Neck 12/14 Prosthetic metal head 22/28 mm

Postero-lateral approach



Our suggestions

Primary indications: muscular deficiency (especially abductor muscl insufficiency secondary to central or peripheral neurological events

Relative indications: Age > 75 ys Femural neck fracture Non compliance during physical therapy As alternative to constrained implants revision or first implant surgery DX

Patient with risk factors and age >75 y

Male 58 years Femural neck fractures psychosis, alcoholic, non compliance Increased risk of dislocation

Male 80 years Aseptic loosening after 18 years ASA 4, age, revision surgery, muscular insufficiency

Post op Revision surgery Dual mobility socket with screws and graft Stem revision cement on cemen

S

Post op Revision surgery Dual mobility socket with screws and graft Stem revision cement on cement

EGUI ST Male 75 years Two stages revision surgery for septic loosening

Dual mobility socket with screws Long stem

No episode of dislocation mean follow up 3 years (6 months - 5 years)

	Patients	Dislocation		
Farizon, Leclercq SHFG 2006	875	2 _{0,22%}		
Leclercq RCO 2008	200	0		
Guyen J Arthroplasty 2007	167	0		
Ardouin SOFCOT 2008	231	0		
Fiquet SOFCOT 2008	346	1 0,28%		
Reynaud SOFCOT 2008	340	1 0,29%		

Clinical results and complications

Dual mobility socket n=86 Mean follow up 4 years (6 months-6 years) ^{12 patients lost at follow up} No dislocation No intraprosthetic dislocation 4 aseptic loosening after 3 years (no screws) 1 deep prosthetic infection 1 early infection

1 failure due to acetabular fracture 2 months after operation (no intraprosthetic dislocation despite the fracture)

Conclusions

Results are excellent in terms of preventing and treating instability in patients presenting risk factors for THA dislocation

Valid alternative to high constrained sockets in revision hip surgery or in younger patients with neurological or psychiatric deseases

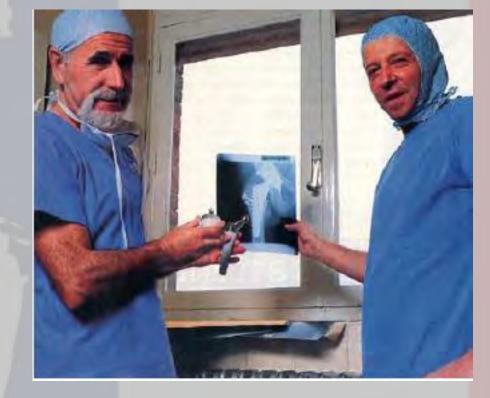
Several European studies using dual mobility cups with mid- to long-term follow up support their effectiveness compared to fixed bearing cups (84 - 96% survival at 15 ys)

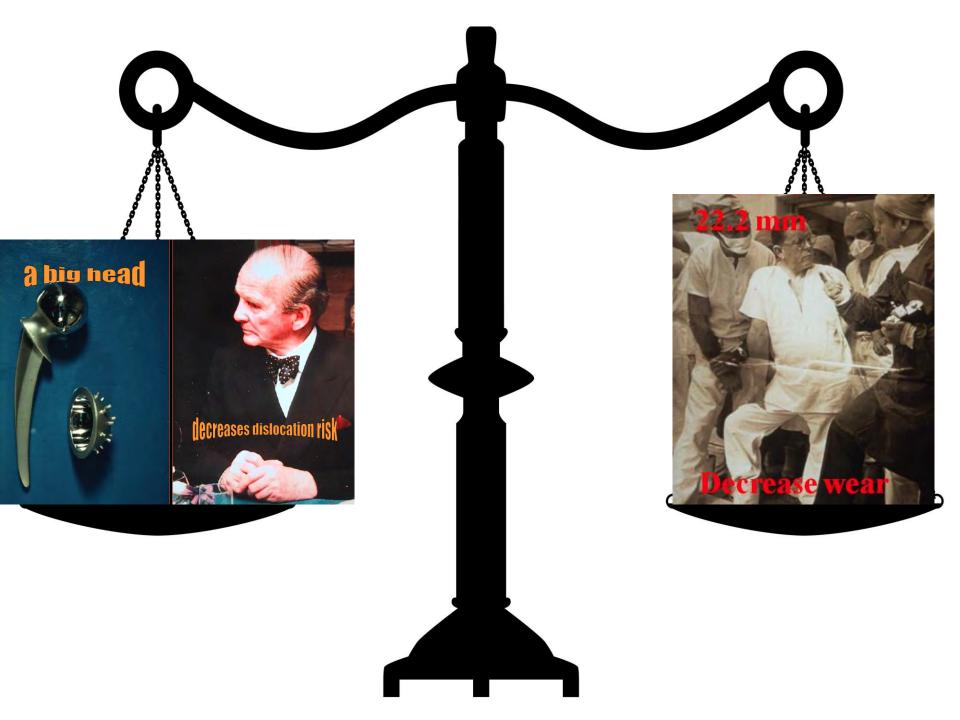
Concerns such as intra-prosthetic dislocation and accelerated wear have been emphasized, although they seem to be less significant in older and low-demand patients

The use of dual mobility cups in younger patients should be viewed with caution based on a lack of current data concerning this high demand patient population

Fig. 7. Wear of the collar: a) Homogenous wear; b) Asymmetrical wear

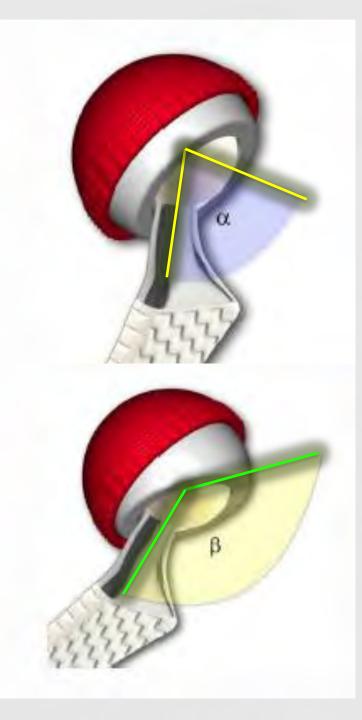
Thank You



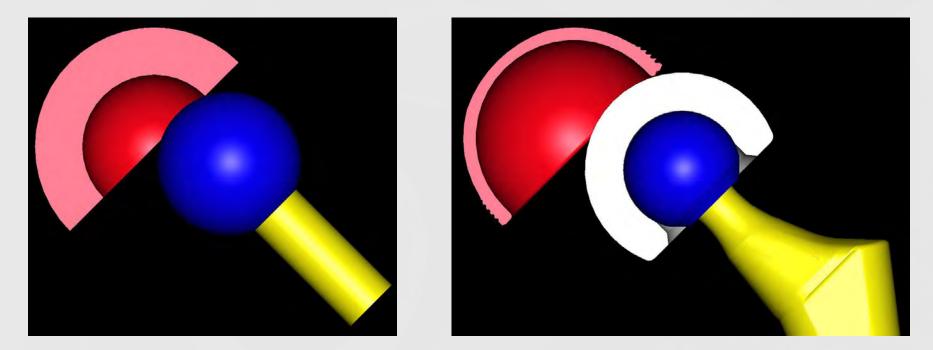


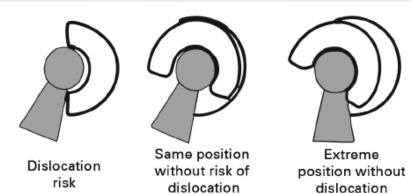
The use of dual mobility bearings in total hip arthroplasty. The UK experience

S. Abouel-Enin M.P.Veettil, J.Griffiths, D.G.Dunlop, J.Latham



- 1976
- Prof Bousquet and Mr André Rambert

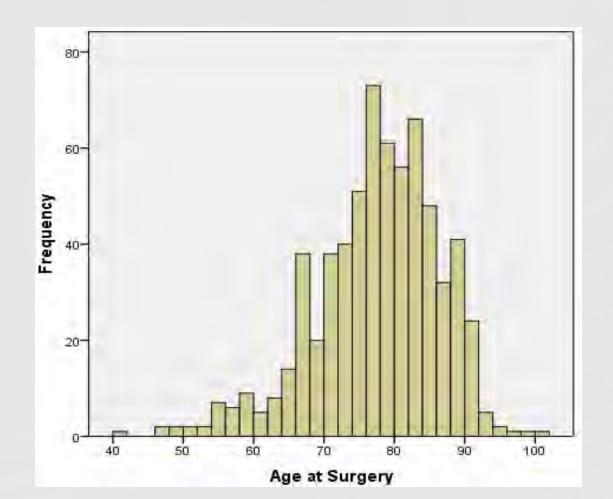



α: first mobility.

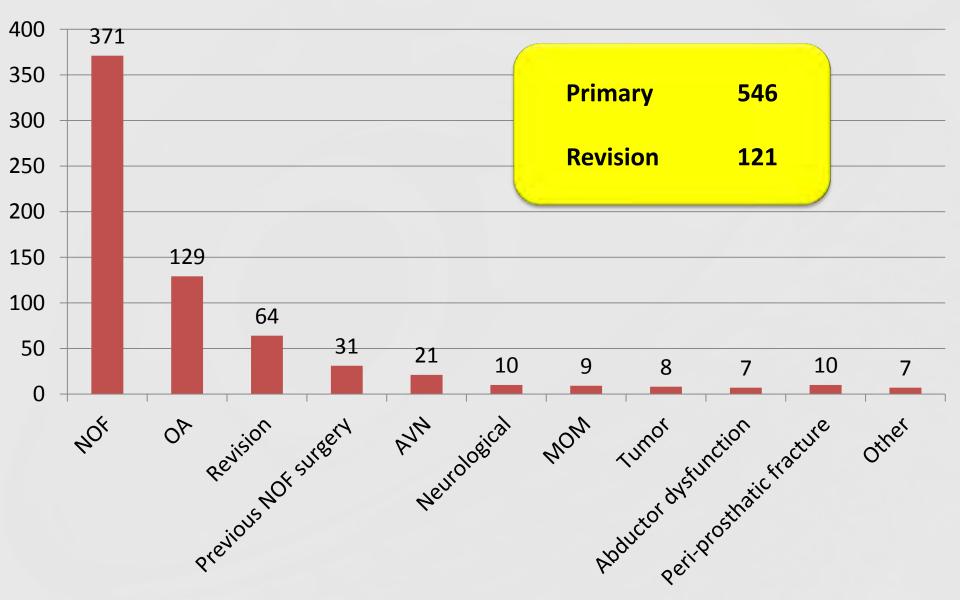
- •75% of movements
- •51° for 22.2 mm head
- •76° for 28mm head
- β: second mobility.
 - over standard ROM
 - 126° for a 43mm cup
 - •140° for a 65mm cup

Jump distance

Ref	N. of hips	Indication	Mean FU	Implant design (cup)	Head size (mm)	Intraprosthetic dislocation (%)	Dislocation rate (%)
Boyer et al[25], 2012	240	Primary THA	22 yr	Novae ^{®1}	22.2	4.1	0
Farizon et al[23], 1998	135	Primary THA	12 yr	Novae ^{®1}	22.2	2	0
Lautridou et al[<u>24]</u> , 2008	437	Primary THA	16.5 yr	Novae-1 ^{®1}	22.2	0.7	1.1
Philippot et al[<u>47]</u> , 2006	106	Primary THA	10 yr	Novae-1 ^{®1}	22.2	1.9	0
Philippot et al[<u>12]</u> , 2009	384	Primary THA	15.3 yr	Novae-1 ^{®1}	22.2	3.6	0
Philippot et al <u>[48]</u> , 2008	438	Primary THA	17 yr	Novae-1 ^{®1}	22.2	5.2	0
Guyen et al[<u>19]</u> , 2007	167	Primary THA	3 уг	Saturne ^{®2}	n/a	0	0
Leclercq et al[20], 2008	200	Primary THA	6 yr	Evora ^{®3}	22.2 $(n = 175)$ 26 $(n = 18)$ 28 $(n = 7)$	0	0
Hamadouche et al[56], 2012	168	Primary THA	6 yr	Tregor ^{®4}	22.2	2.4	0
Vielpeau et al[21], 2011	437 (Group A) 231 (Group B)	Primary THA	16.5 yr 5.2 yr	Original Bousquet Novae- $\mathbb{E}^{\circledast 1}$	22.2	0.7 0	0.0
Bouchet et al[54], 2011	105	Primary THA	2.3 yr	Novae ^{®1} , Statītt ^{®5} , Avantage ^{®6} , Gyros ^{®7}	28	n/a	0
Bauchu et al[60], 2008	150	Primary THA	6.2 yr	Polarcup ^{®8} 3 rd gen	n/a	0	0
Combes et al[22], 2013	2480	Primary THA	7 yr	Novae ^{®1} , Avantage ^{®6} , Collegia ^{®9} , EOL ^{®10} , Gyros ^{®7} , Tregor ^{®4} , Polarcup ^{®8} , Saturne ^{®2} , Evora ^{®3}	28 (n = 1484) 22 (n = 956)	0.1 0.6	0.7 0.5
Tarasevicius et al[<u>36]</u> , 2010	42	Neck Fractures	l yr	Avantage ^{®6}	28	n/a	0
Adam et al[<u>35]</u> , 2012	214	Neck Fractures	3-9 mo	Saturne ^{®2}	28 (n = 182) 22.2 (n = 32)	0	1.4
Sanders et al[44], 2013	10	Spastic disorders	3.2 yr	Avantage ^{®6}	n/a	0	0
Philippeau et al[<u>37]</u> , 2010	71	Tumor resection	3.3 yr	Avantage ^{$@6$} , Satum ^{$@2$} , Novae ^{$@1$} , other	n/a	n/a	9.8
Langlais et al[<u>17</u>], 2008	85	Revision THA	3.2 yr	Tregor ^{®4}	22	n/a	1.1
Leiber-Wackenheim et al[14], 2011	59	Revision THA	8 yr	Novae-1 ^{®1} Novae-E ^{®1}	28	0	1.7
Hamadouche et al[<u>31</u>], 2010	51	Revision THA	4.3 yr	Tregor ^{®4}	22.2	2	2
Guyen et al[<u>16</u>], 2009	54	Revision THA	3.9 yr	Saturne ^{®2}	n/a	3.7	1.8
Hailer et al[<u>61]</u> , 2012	228	Revision THA	2 yr	Avantage ^{®6}	n/a	n/a	2
Philippot et al[<u>30]</u> , 2009	163	Revision THA	5 yr	Novae ^{®1}	22.2	0	3.7


Our study

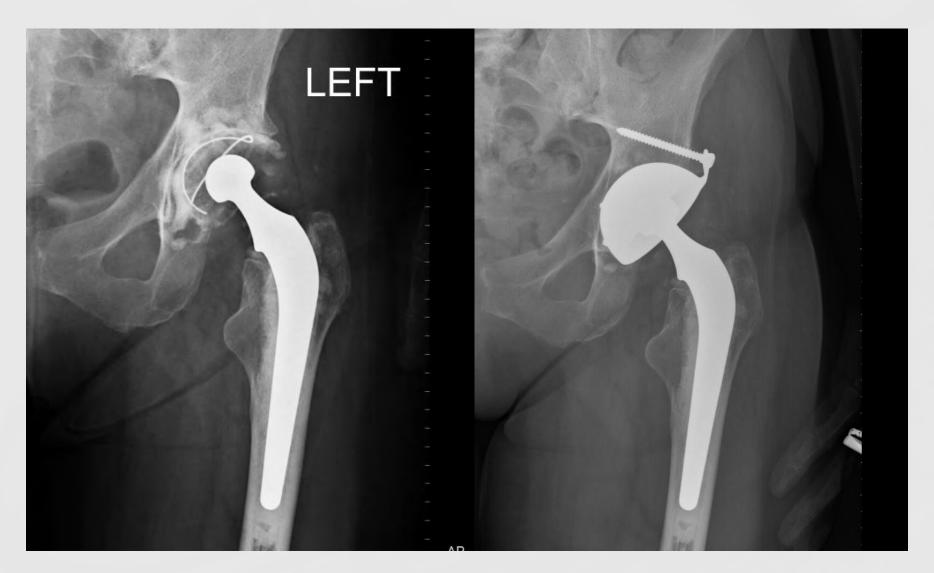
- Retrospective review
- 3 Hospitals
- Patients records cross-checked in surrounding
 5 hospitals to cover a large catchment area
- First used for recurrent dislocation in 2006
- First used for primary THR in 2008
- Operating surgeon level: EVERYONE !


Patients

- 667 patients
- 2006 to 2014
- Minimum of 1 year follow up
- Mean follow up 3 years
- 32% males and 68% females
- 77 deaths (11.5 %)

- Mean age at time of surgery is 77 years
- Age range (41-100) years

Indications


NICE National Institute for Health and Care Excellence

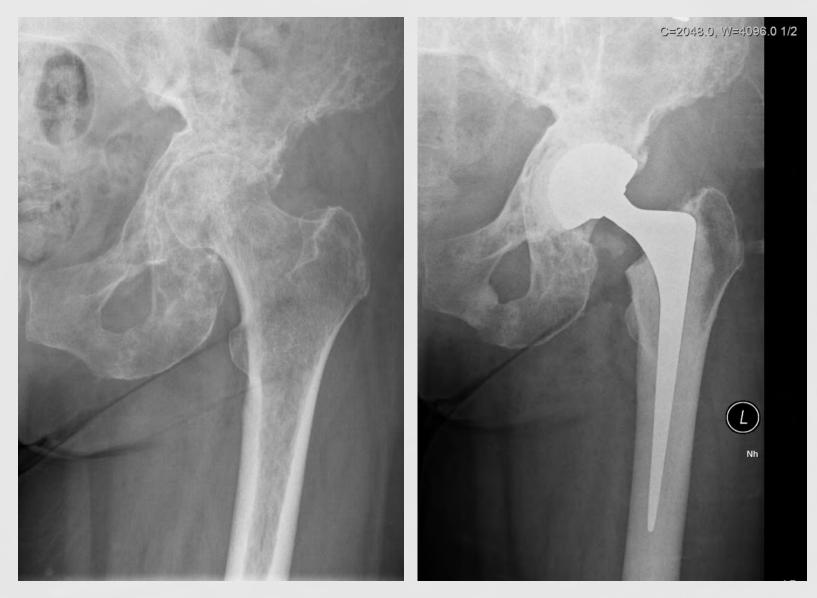
Recommendation

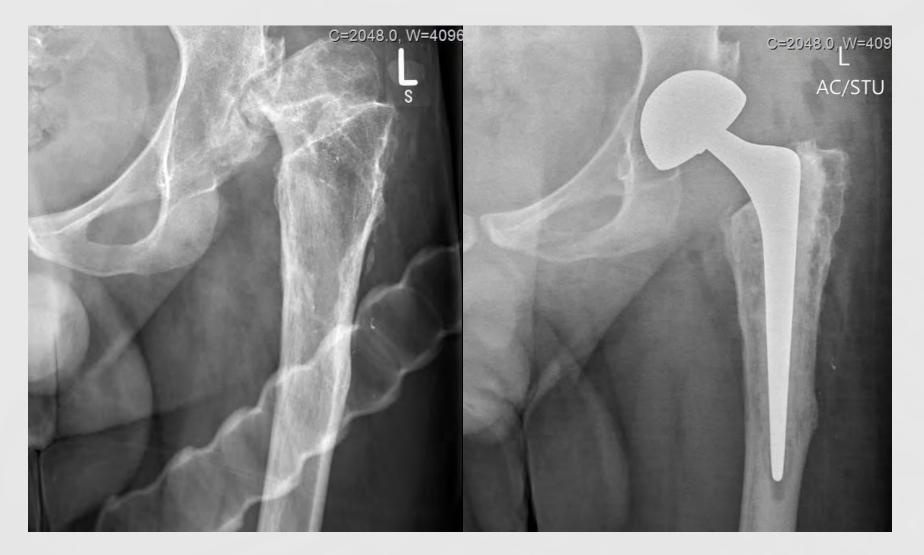
Offer total hip replacement to patients with a displaced intracapsular fracture who:

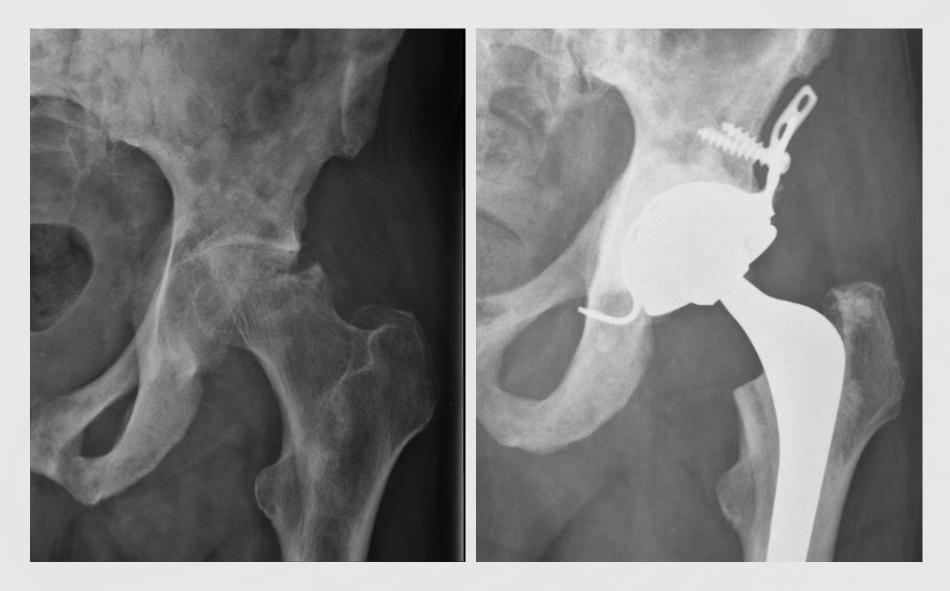
- were able to walk independently out of doors with no more than the use of a stick and
- are not cognitively impaired and
- are medically fit for anaesthesia and the procedure.

Loose cup / fixed stem

Failed fixation


Revision


Revision custom-implant

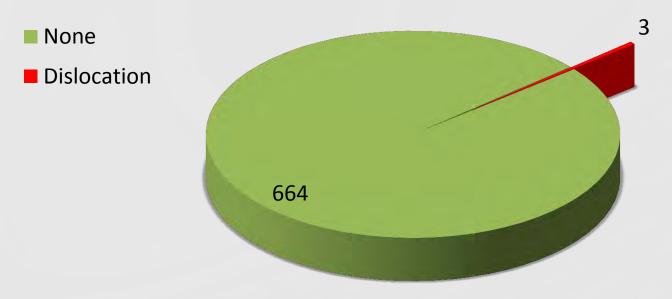

Bone tumors

Hip dysplasia

Avascular necrosis

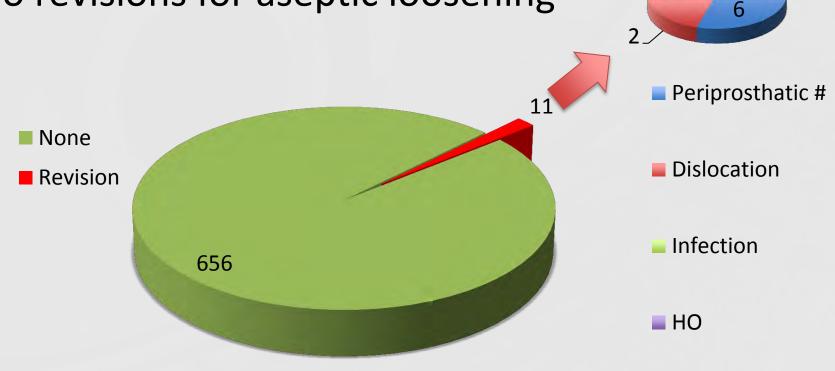
Osteoarthritis

Criteria for failure


• Dislocation

• Revision for any reason

Results


Dislocation

- 3 dislocations out of 667
- 0.4%
- Within first 6 months
- 2 required revision

Revision

- 11 Revisions
- 1.6%
- No revisions for aseptic loosening

1

2

Conclusion

 Dual mobility THR is an ideal choice in patients with high risk of dislocation both in primary and revision settings

• Our results show:

0.4% dislocation rate0% revision rate for aseptic loosening1.6% revision rate for other causes

Thank you

IS THERE A DIFFERENCE IN ACETABULAR COMPONENT ORIENTATION AND POST-OP DISLOCATION BETWEEN ELECTIVE AND TRAUMA TOTAL HIP REPLACEMENTS?

Sarah Hirri, (FY2) Timothy Kane FRCS (Trauma & Ortho)

Queen Alexandra Hospital, Portsmouth, PO6 3LY, United Kingdom

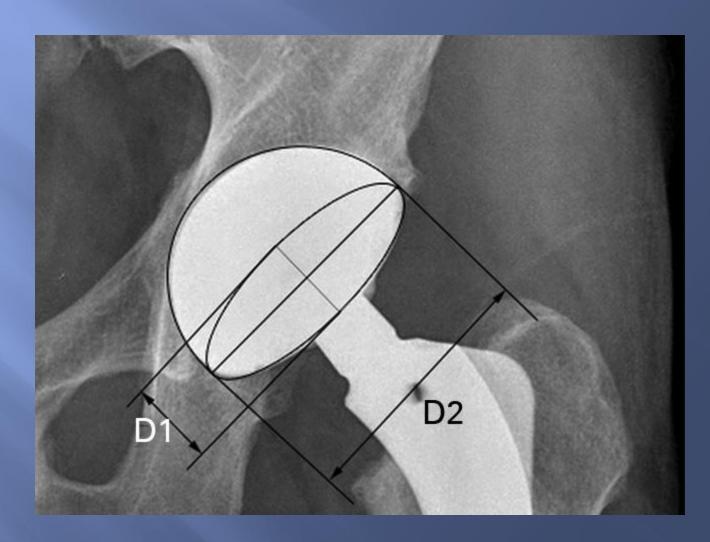
Introduction

 Acetabular component orientation in THRs is important in reducing dislocations

 Optimal acetabular component orientation remains controversial, has been defined by several 'safe zones'

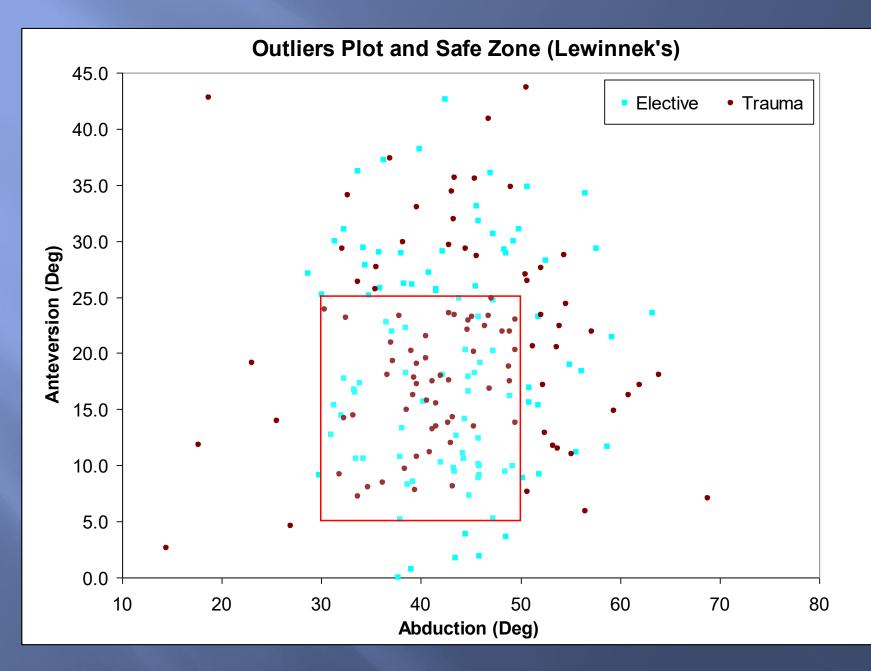
Correct identification the TAL aids cup positioning, which may be more difficult to identify in the arthritic acetabulum.

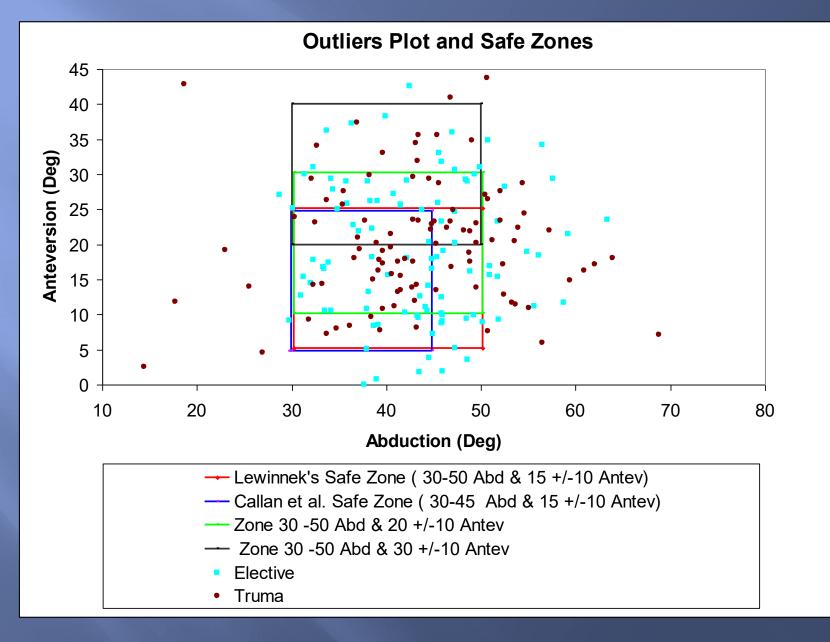
There is limited data comparing acetabular component position between elective and trauma THRs


Method

 Retrospective series of 99 consecutive trauma and 98 elective THRs identified using database.

One observer measured post-operative anteroposterior (AP) pelvis radiographs for cup abduction and anteversion


The cup orientation within different 'safe zones' was recorded.


 Dislocations at 6 months were identified radiographically.

Results

Operation	Elective	Trauma	
Total No of Patients	98	99	
Male	36	27	
Female	62	72	
Total Age (Average)	37.1-96.2 (68.9)	55.2-96.7 (72.0)	
Male Age (Average)	37.1-94.9 (68.3)	56.7-96.7 (75.0)	
Female Age (Average)	40.8-96.2 (69.2)	55.2-89.9 (71.0)	

DETA	ILS	30 ⁰ - 50 ⁰ Abduction	30 ⁰ - 45 ⁰ Abduction	15 ⁰ +/-10 ⁰ Anteversion	Lewinnek's safe zone: 30 ⁰ - 50 ⁰ Abduction and 15 +/- 10 Anteversion
	Total No	98	98	98	98
Elective	Outlier No	16	41	37	48
	Outlier %	16.3	41.8	37.8	49.0
	Total No	99	99	99	99
Emergency	Outlier No	29	43	24	46
	Outlier %	29.3	43.4	24.2	46.5

DETAI	LS	Callan et al. safe zone: 30 ⁰ - 45 ⁰ Abduction and 15 +/-10 Anteversion	20º +/-10º Anteversio n	30 ⁰ - 50 ⁰ Abductio n and 20 +/-10 Anteversi on	30 ⁰ +/- 10 ⁰ Antever sion	30 ⁰ - 50 ⁰ Abduction and 30 +/- 10 Anteversi on
Elective	Total No	98	98	98	98	98
	Outlier No	75	30	43	55	63
	Outlier %	76.5	30.6	43.9	56.1	64.3
Emergency	Total No	99	99	99	99	99
	Outlier No	72	22	44	53	63
	Outlier %	72.7	22.2	44.4	53.5	63.6

Dislocations

Elective group – 2 patients, one at 3 and one at 7 weeks

•Trauma group - 3 patients, including one that dislocated twice and another patient dislocating 4 times

•Time to first dislocation ranged from 26 to 39 days, latest dislocation at 5 months.

 No statistically significant difference in dislocation rate

Cup positioning was consistent in elective versus trauma patients.

 There was no clinically significant difference in dislocation rate, however the sample size was small

The trauma dislocations were more concerning as this group showed a tendancy towards becoming recurrent dislocators.

Thank you

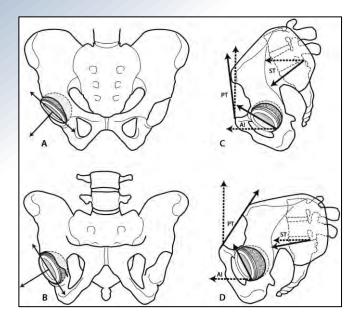
INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA

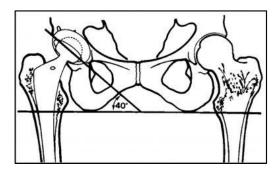
The influence of obesity in cup positioning during total hip replacement

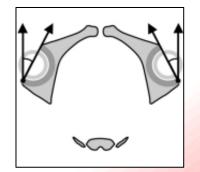
M. Franceschini – F. Calabrò – G.V. Mineo – M.M. Parrini

Clinica Ortopedica – IV Divisione Istituto Ortopedico «G. Pini» - Milano

Correct position

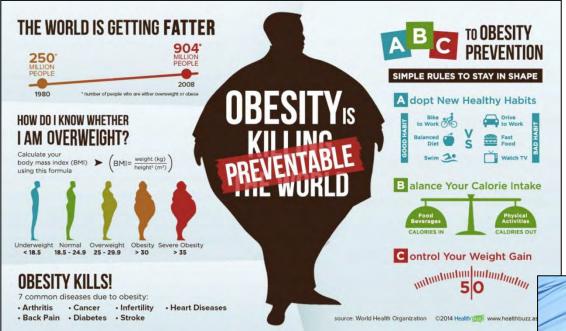

Normal biomechanics - good stability


Longterm survivorship – Good quality of life



Acetabular Cup Orientation

Lewinnek 'Safe Zone': Inclination 30°-50° - Anteversion 5°-25°



Malpositioning?

- Dislocation
- Impingement
- Osteolysis
- Aseptic Loosening
- Increased Wear
- Fracturing of the polyethyilene liner
- Edge loading

Obesity

The incidence of obesity is constantly increasing

Literature

Clin Orthop Relat Res. 2011 Feb;469(2):319-29. doi: 10.1007/s11999-010-1487-1.

The John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital.

Callanan MC¹, Jarrett B, Bragdon CR, Zurakowski D, Rubash HE, Freiberg AA, Malchau H.

Orthop Traumatol Surg Res. 2015 May;101(3):289-96. doi: 10.1016/j.otsr.2015.01.011. Epub 2015 Mar 25.

The influence of obesity on primary total hip arthroplasty outcomes: A meta-analysis of prospective cohort studies.

Liu W¹, Wahafu T¹, Cheng M¹, Cheng T¹, Zhang Y¹, Zhang X².

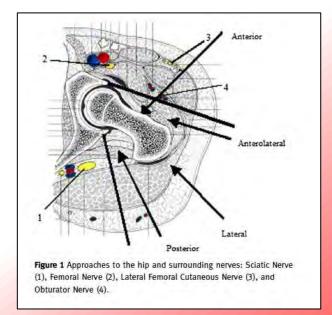
Hip Int. 2014 May-Jun;24(3):263-9. doi: 10.5301/hipint.5000125. Epub 2014 Mar 17.

Acetabular component orientation in total hip arthroplasty: the impact of obesity.

McArthur BA1, Vulcano E, Cross M, Nguyen J, Della Valle AG, Salvati E.

ANZ J Surg. 2013 Mar;83(3):171-4. doi: 10.1111/j.1445-2197.2012.06176.x. Epub 2012 Aug 21.

Body mass index and acetabular component position in total hip arthroplasty.


McBride A1, Flynn J, Miller G, Barnes M, Mackie S.

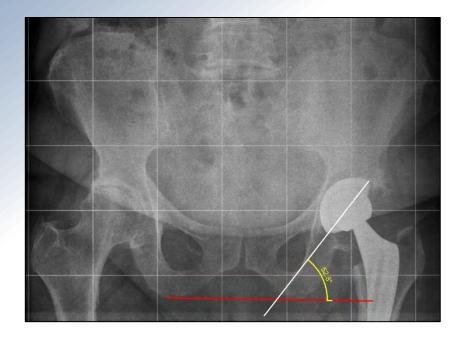
Methods

• From January 2013 to October 2015

- 215 patients affected by Primary Hip Arthritis
- 3 surgical approaches: DAA Antero-Lateral Direct Lateral

	Obese n=63	Non Obese n=152	
Age	65,3 ± 7,4	68,9 ± 9,5	
BMI	32,9 ± 3,7	24,4 ± 2,9	
Gender F/M	39/24	67/85	
Side L/R	34/29	74/78	

Postop X Ray


Why x Ray?

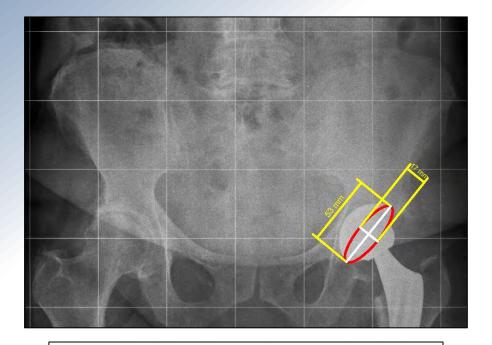
- Less irradiation than CT Scan
- Cheap
- Fast
- Enough accurate

Evaluation of radiological methods of assessing cup anteversion in total hip replacement

K. S. Manjunath¹⁽ⁱ⁾ · Vijaya Soruban² · K. G. Gopalakrishna²

Inclination

Determined by an angle of a line between the inferior border of the ischial tuberosities and a line drawn transecting the widest point of the edge of the cup


Safe zone: 30°-50°

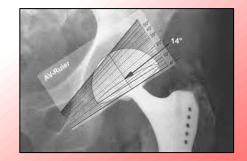
Body mass index and acetabular component position in total hip arthroplasty

Andrew McBride, Jennifer Flynn, George Miller, Matthew Barnes and Scott Mackie -Department of Orthopaedics, Royal Habert Hospital, Habert, Tesmania, Australia

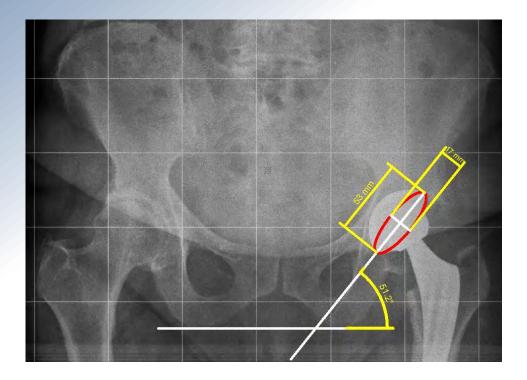
Antiversion

Evaluation of radiological methods of assessing cup anteversion in total hip replacement

K. S. Manjunath¹^O · Vijaya Soruban² · K. G. Gopalakrishna²


A new method of measuring acetabular cup anteversion on simulated radiographs

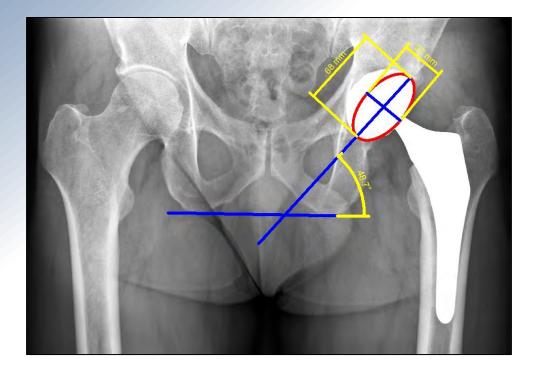
<u>Vikas Bachhal</u>, ^{Bit} <u>Nipun Jindal</u>,² <u>Gaurav Saini</u>,¹ <u>Radheshyam Sament</u>,¹ <u>Vishal Kumar</u>,¹ <u>Devendra Chouhan</u>,¹ and <u>Mandeep Dhillon</u>¹


Comparison between methods:

- Lewinnek method ARCsin (short-axis/long-axis)
- Ruler

Safe zone: 5°-25°

Measurements – Case 1

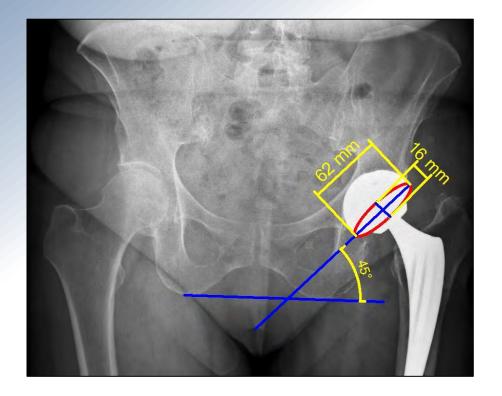

Inclination 51,2°

Antiversion 18,7°

BMI 31,3

Lewinnek 'Safe Zone': Inclination 30°-50° - Anteversion 5°-25°

Measurements – Case 2


Inclination 48,7°

Antiversion 33,0°

BMI 27,2

Lewinnek 'Safe Zone': Inclination 30°-50° - Anteversion 5°-25°

Measurements – Case 3

Inclination 45,0°

Antiversion 16,2°

BMI 27,7

Lewinnek 'Safe Zone': Inclination 30°-50° - Anteversion 5°-25°

Results


	DAA n=71	Antero-Lateral n=47	Direct Lateral n=97
Inclination BMI < 30 Kg/m ²	44,22° ± 8,21°	45,44°± 5,13°	45,47° ± 8,29°
Inclination BMI > 30 Kg/m ²	49,50°± 1,54°	50,36° ± 6,46°	47,95° ± 5,74°
Anteversion BMI < 30 Kg/m ²	17,53° ± 5,35°	20,24° ± 9,62°	16,24° ± 6,64°
Anteversion BMI > 30 Kg/m ²	19,33° ± 2,44°	13,57° ± 2,31°	13,59° ± 2,44°

Conclusions

- In obese patients is more difficult to obtain the correct inclination for every surgical approach, in particular for the antero-lateral one.
- The anteversion is included into the safe zone for obese and non obese patients both.
- High BMI is a risk factor for Cup Malpositioning because of:
 - subcutaneous tissue thickness
 - bony landmarks identification is difficult
 - the patient positioning is problematic (TILT)
- The surgeon experience is important

Tip & Tricks

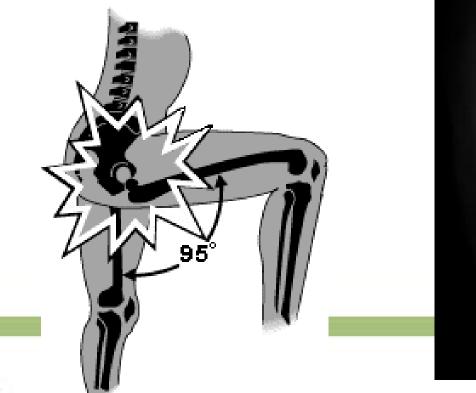
- Larger incision \rightarrow Better exposure
- Dedicated instrumentation
 - \rightarrow Wider Homanns
 - \rightarrow Reamer with offset
 - \rightarrow Impactor with offset

 Fluoroscopy and/or navigation could be useful in Obese Patients

THANKS

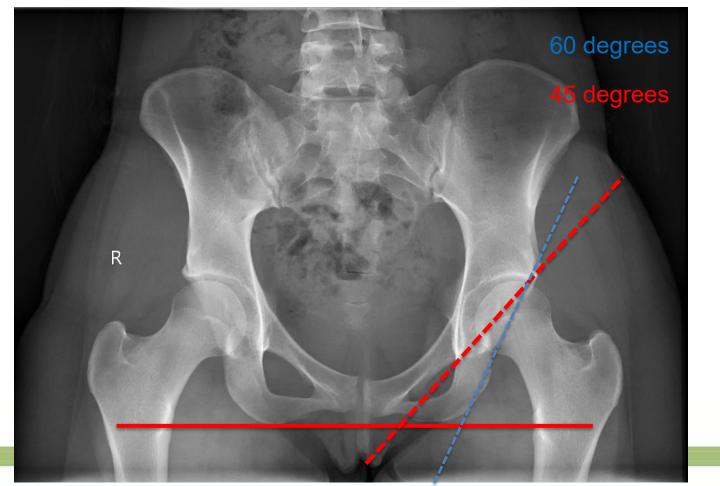
ELEVATED LINER PLACEMENT AN ANATOMICAL STUDY.

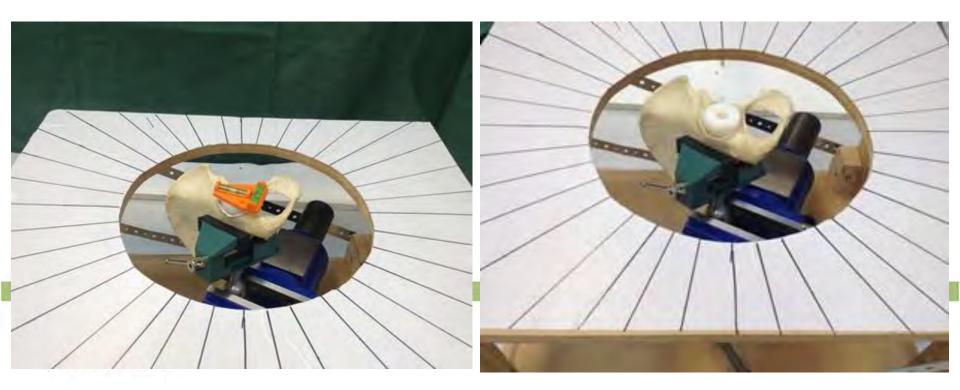
Mr David Mitchell Dr Leigh MacDonald Associate Professor Norm Eizenberg


Factors in Hip Instability

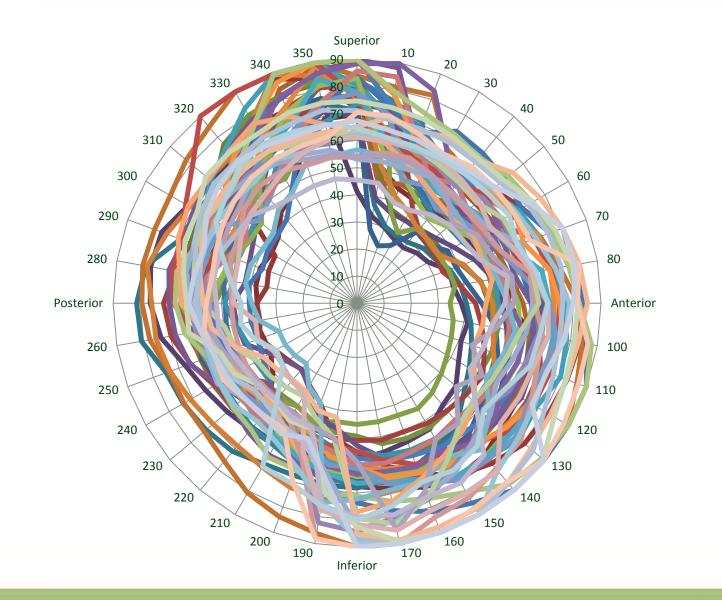
- •
- Component positioning
 - Liner
 - ٠
 - •
- Head size
- Dual Mobility design

Issue

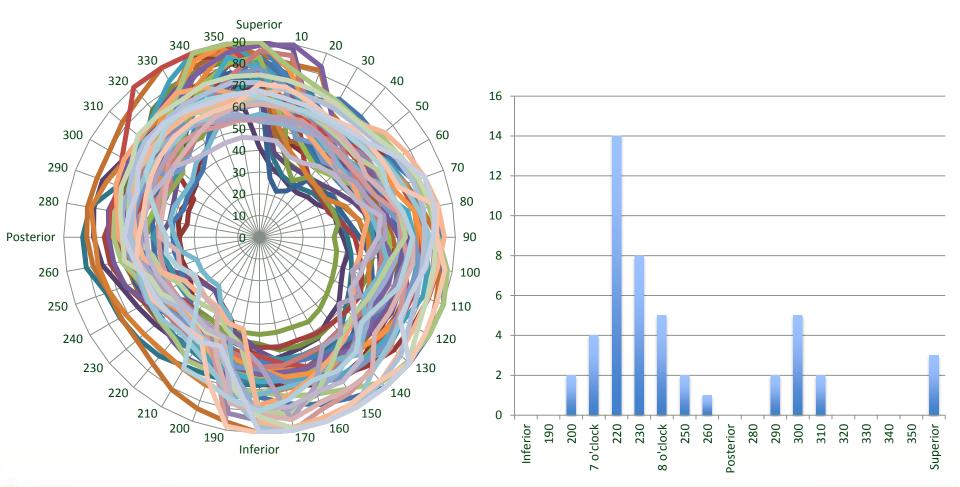

- A mechanism of hip dislocation occurs with internal rotation, flexion and adduction: initially posteroinferiorly
- Radiographic appearance is different: Muscle force pulls dislocated head posterosuperiorly

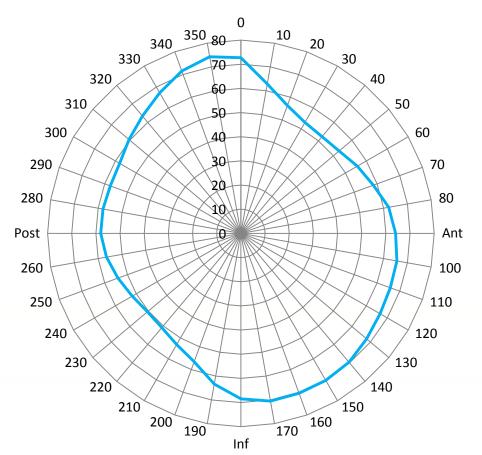

Anterior and posterior rim lines

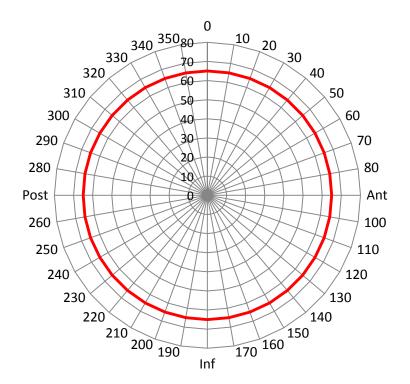
Method


- 48 dry bone specimens
- Hemipelvis fixed in vice
- Horizontal plane was equivalent to 45 degrees inclination and 20 degrees of anteversion

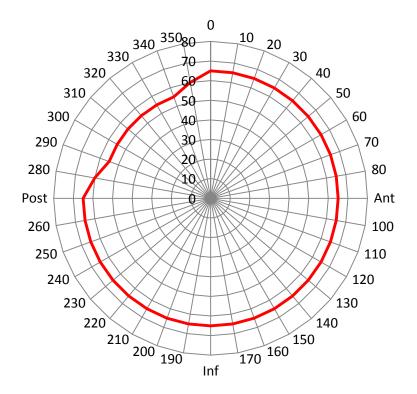
Method


- Angle of inclination measured to the point touching the rim of the boney acetabulum
- Angle from vertical calculated
- Measurements mapped on a polar graph

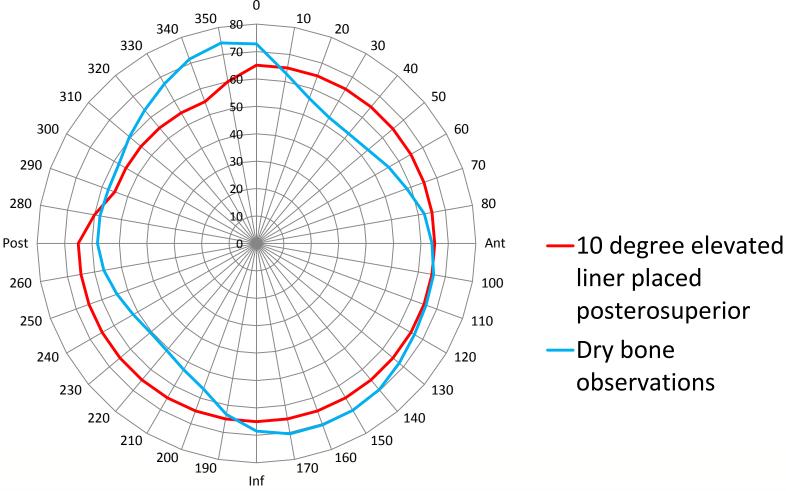

Incidence of Posterior High Point


Results

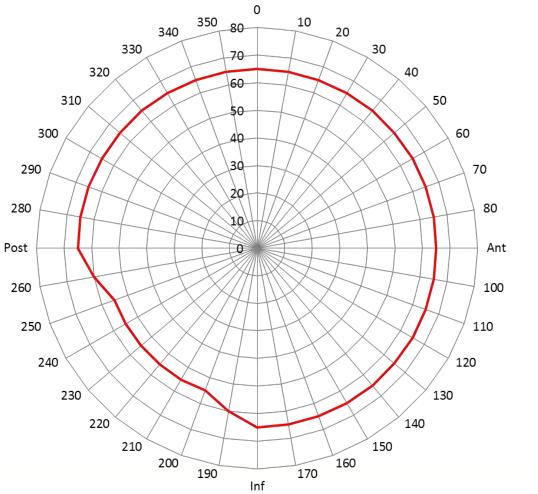
- Most common highpoint is at 7.30 position
- Average elevation 18.5 degrees



Flat v Elevated Lip Liner

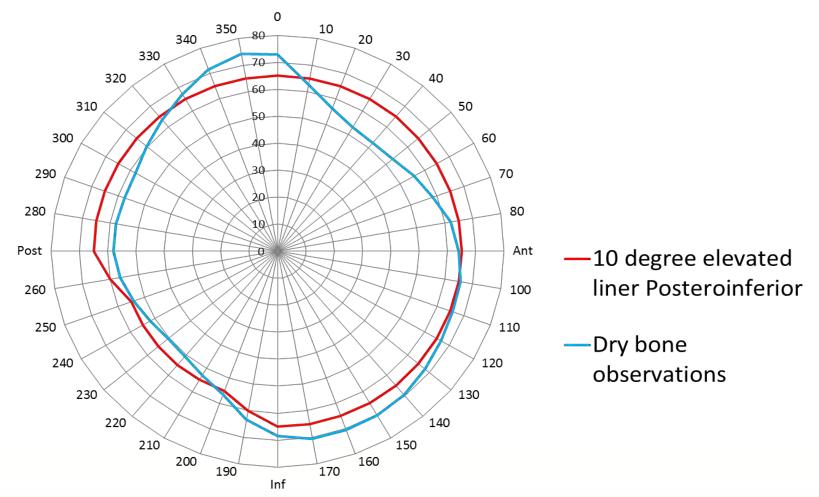

—Hemispherical liner

—10 degree elevated liner Posteriosuperior

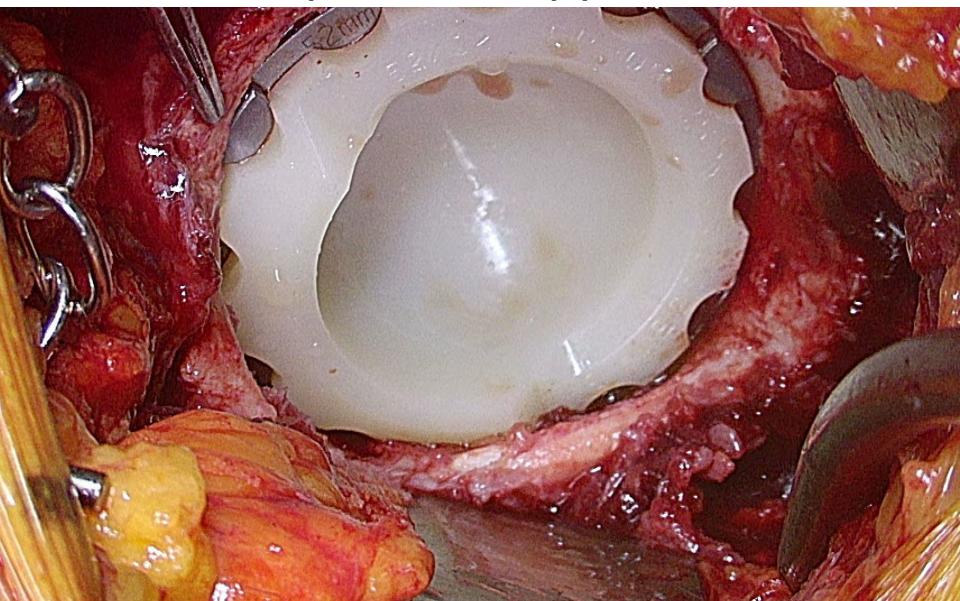


Superimposed Posterosuperior Liner

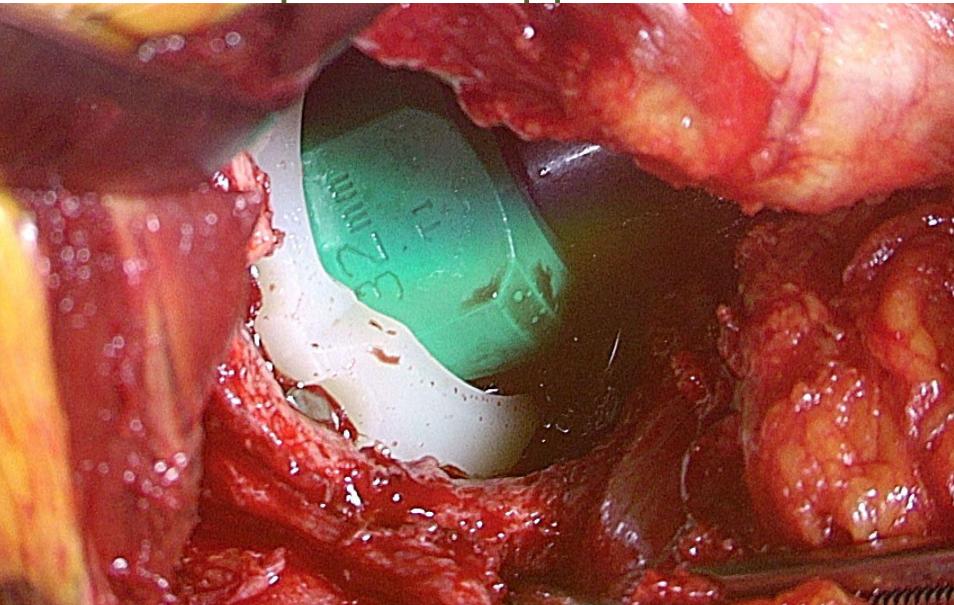
BALLARAT



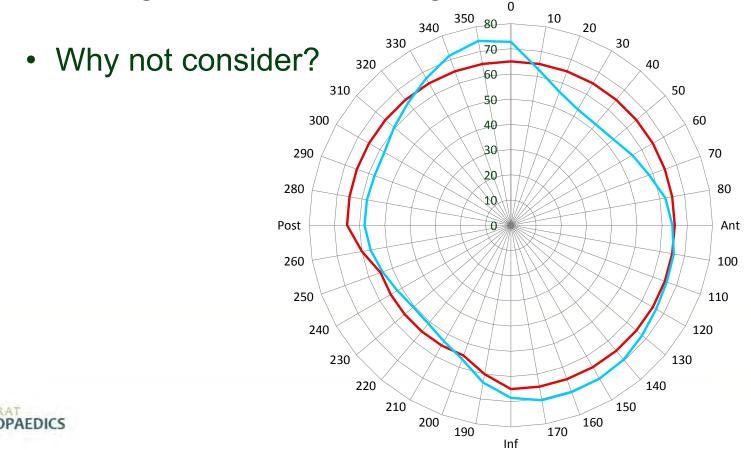
-10 degree elevated liner Posteroinferior



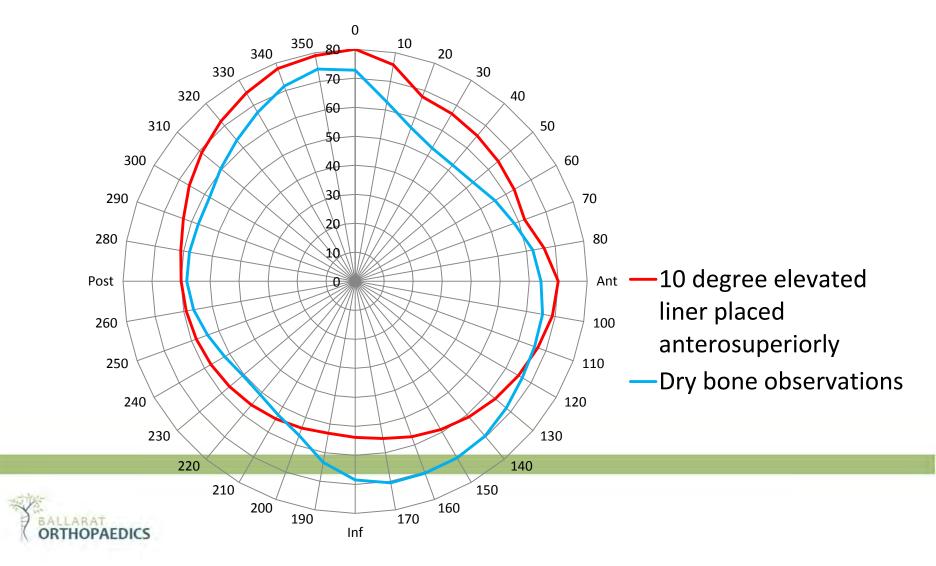
Superimposed Posteroinferior Liner



Intraoperative Appearance

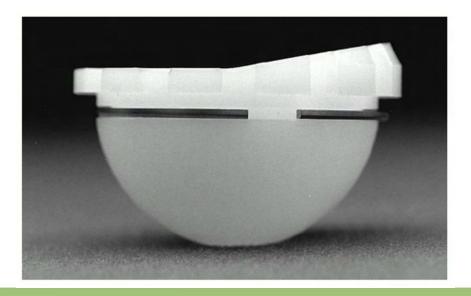


Intraoperative Appearance 2



Conclusion

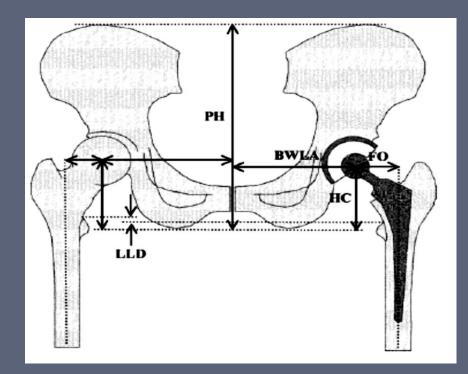
- Most common highpoint is at 7.30 position
- Average elevation 18.5 degrees



Imperfect Cup Positioning 60 degrees open & 10 degrees anteversion

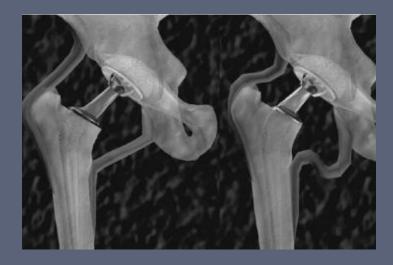
Conclusion

- Uncemented acetabular cups commonly have an elevated liner placed posterosuperiorly
- Cemented cups often have a long posterior wall
- Our paper explores this dichotomy



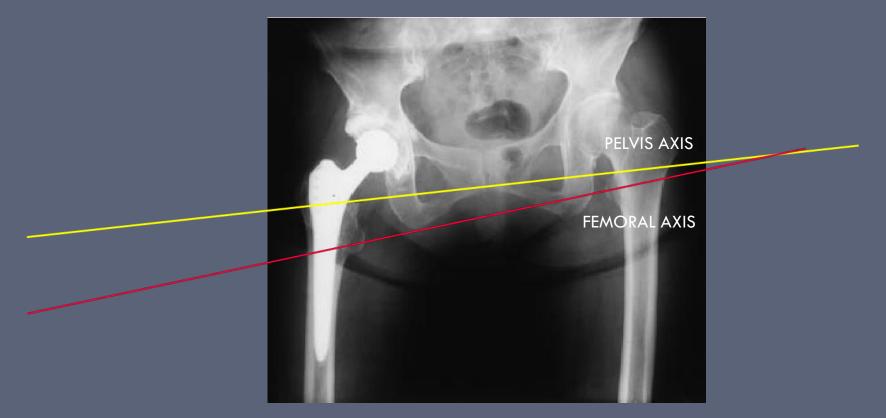
ACCURATE ANATOMIC RESTORATION IN PRIMARY TOTAL HIP REPLACEMENT WITH 3 D HIP PLANNING

U. REBERS, MALTA / GERMANY


THE SURGEONS'S OBJECTIVES IN THA

DETERMINE CENTRE OF ROTATION REPRODUCE FEMORAL OFF-SET ESTABLISH LEG LENGTH EQUALITY

SIMULTANEOUS REPRODUCTION OF LEG LENGTH EQUALITY AND FEMORAL OFF-SET



IS NOT RESTORED IN 32% OF ALL CASES REF: BOURNE et al , JOA 2002

U. REBERS, MALTA / GERMANY

COMMON PROBLEM IN THR

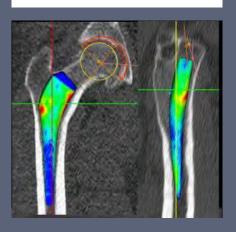

LEG LENGTH DISCREPANCY / LLD

POST OP OHS WAS REDUCED BETWEEN 18 % AND 27 % IN PATIENTS WITH LLD KONYVES A. JBJS 2005

U. REBERS, MALTA/GERMANY

NEXT PROBLEM THE RESTORATION OF THE FEMORAL OFF SET

U.REBERS, MALTA / GERMANY


VOL. 91-B, No. 3, MARCH 2009

E. Sariali, A. Mouttet, G. Pasquier, E. Durante, Y. Catone

Accuracy of reconstruction of the hip using computerised three-dimensional pre-operative planning and a cementless modular neck

From Hôpital Pitié Salpétrière, Paris, France

- 223 PATIENTS WITH PRIMARY THA
- CT SCANS PRE AND POSTOP
- 3 D HIP PLANNING FOR ALL CASES
- CEMENTLESS IMPLANTS AND MODULAR NECK STEMS

Accuracy of reconstruction of the hip using computerised three-dimensional pre-operative planning and a cementless modular neck

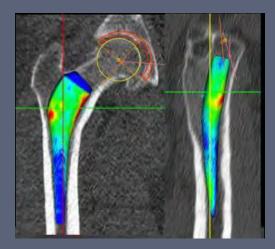
RESULTS OF THIS STUDY

ROTATIONAL CENTRE OF THE HIP WAS RESTORED WITH A MEAN ACCURACY OF 0.73 MM CRANIOCAUDALLY AND 1.2 MM LATERALLY

U.REBERS, MALTA / GERMANY

Accuracy of reconstruction of the hip using computerised three-dimensional pre-operative planning and a cementless modular neck

RESULTS OF THIS STUDY

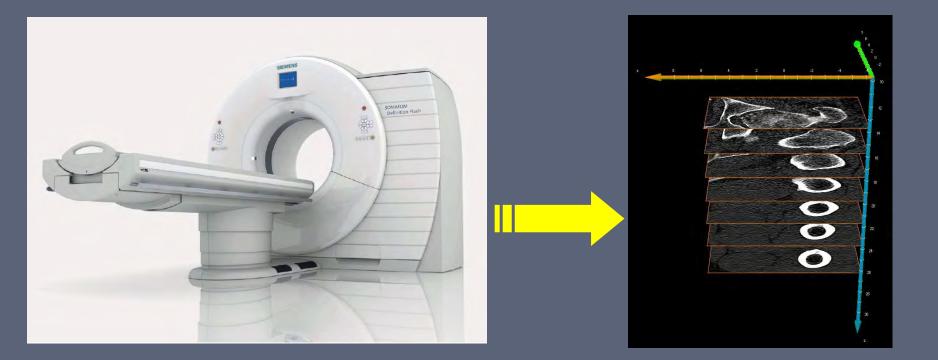

FEMORAL OFFSET WAS RESTORED WITH A MEAN ACCURACY OF 0.8 MM

LEG LENGTH WAS RESTORED WITH A MEAN ACCURACY OF 1 MM

U. REBERS, MALTA/GERMANY

CT BASED COMPUTERIZED 3 D HIP PLANNING HAS SHOWN TO BE VERY ACCURATE AND HELPFUL TO RESTORE FEMORAL OFF SET, LEG LENGTH AND THE CENTRE OF HIP ROTATION SIMULTANEOUSLY

U. REBERS, MALTA / GERMANY


WHAT IS NECESSARY TO PERFORM 3 - D HIP PLANNING ?

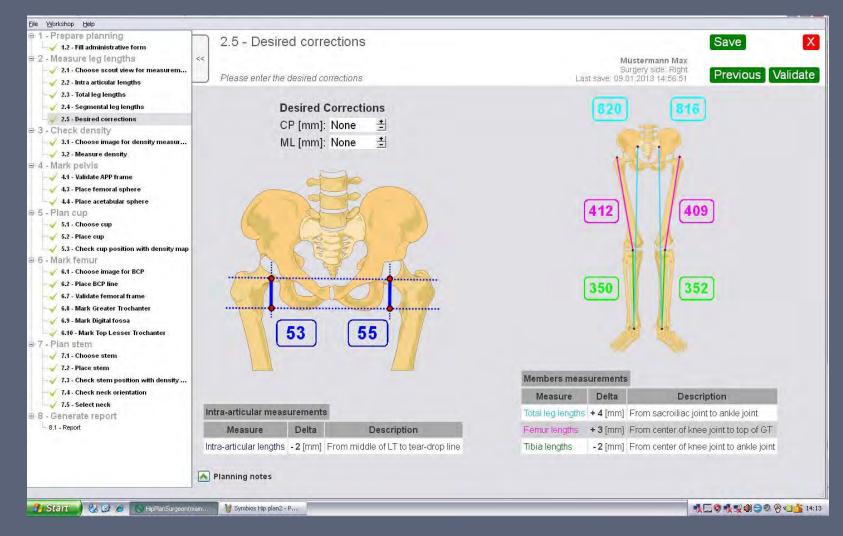
- CT SCAN
- PLANNING SOFTWARE
- CHOICE OF DIFFERENT STEMS
- MODULARITY

U. REBERS, MALTA/GERMANY

>CT IMAGING FOLLOWING A SPECIAL PROTOCOL

U.REBERS, MALTA/ GERMANY

PLANNING CUP POSITION AND ROTATIONAL CENTRE


U. REBERS, MALTA/GERMANY

PLANNING THE STEM

DESIRED CORRECTIONS IN LEG LENGTH

ARE THERE ANY CONCERNS ABOUT IRRADIATION ?

USING A MODERN SPIRAL SCANNER THE IRRADIATION EXPOSURE OF A PLANNING CT SCAN IS BETWEEN 3.5 AND 5 mSv WHICH IS EQUIVALENT TO FOUR PLAIN PELVIC X - RAYS

TECHNICAL IMPROVEMENTS IN CT SCANNING MIGHT BE ABLE TO REDUCE IRRADIATION EXPOSURE IN THE FUTURE

U. REBERS, MALTA / GERMANY

3 D HIP PLANNING IS A VERY RELIABLE TOOL TO RESTORE ROTATIONAL CENTRE , FEMORAL OFF SET AND LEG LENGTH SIMULTANEOUSLY

U. REBERS, MALTA /GERMANY

TAKE HOME MESSAGE

3-D HIP PLANNING OFFERS A PREOPERATIVE CHOICE OF IMPLANTS ADAPTED TO THE INDIVIDUAL ANATOMICAL NEEDS OF THE PATIENT. MODULARITY IS ESSENTIAL

U. REBERS, MALTA /GERMANY

U. REBERS, MALTA/GERMANY

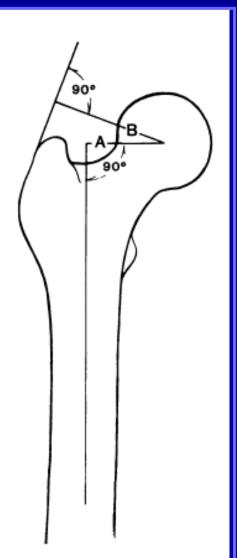
PLANNING TOOL GIVING MORE PRECISION AND ACCURACY THAN CONVENTIONAL TEMPLATING

3-D HIP PLANNING HAS SHOWN TO BE AN EXCELLENT

TAKE HOME MESSAGE

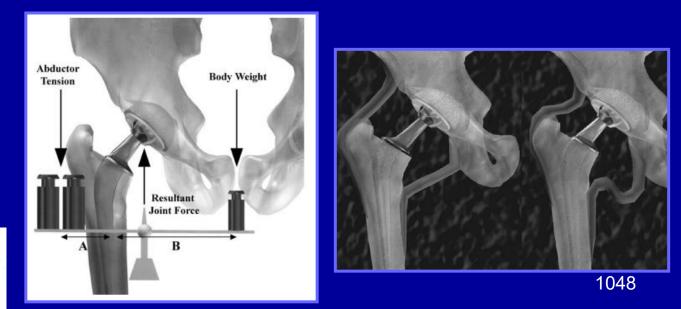
THANK YOU VERY MUCH FOR YOUR ATTENTION

U. REBERS, MALTA /GERMANY



The correlation between femoral offset and clinical outcome

G. Toro C. Grinberg M. Gison G. Calabrò M. De Falco A. Toro

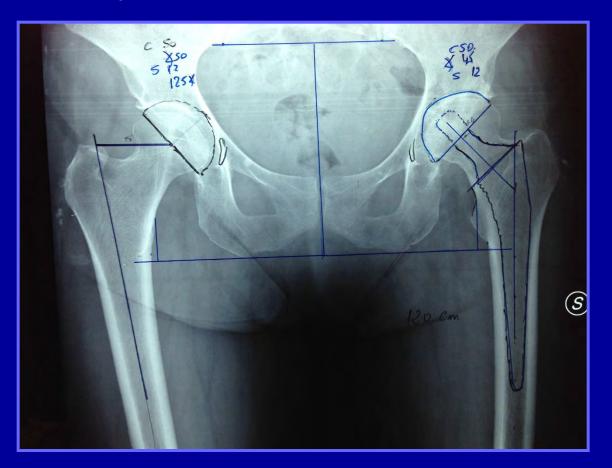

Femoral offset

- The perpendicular distance between the center of the femoral head and a line drawn down the center of the femoral shaft
- The perpendicular distance from the line of action of the abductor muscles to the center of the femoral head is the most effective variable for the numerical calculation.

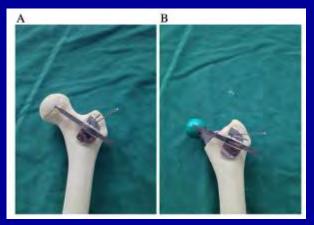
Introduction

- The lenght of abductors lever arm («A») is related to femoral offset
 - FO reproduction in THA assures an adequate abductor tension

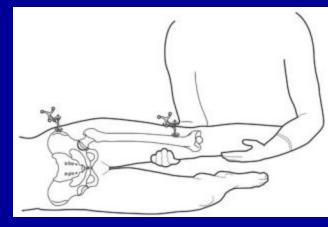
Soft-Tissue Balancing of the Hip


THE ROLE OF FEMORAL OFFSET RESTORATION BY MARN N. CHARLES, MD, ROBERT B. BOURNE, MD, J. RODERICK DAVEY, MD, A. SETH GREENWALD, MD, BERNARD F. MORREY, MD, AND CSCIL H. RORABECK, MD An Instructional Course Lecture, American Academy of Orthogacia Surveyon

Introduction


- PubMed search using "femoral offset total hip arthroplasty" as keywords identifies 386 articles
- Over 365 published after year 2000

S NCBI Resources		Sign in to NCBI
Publiced.gov US National Library of Medicine National Institutes of Health	PubMed femoral offset total hip arthroplasty Create RSS Create alert	Search Help
Article types Clinical Trial Review Customize	Summary + 20 per page + Sort by Publication Date + Send to: + Search results	Filters: <u>Manage Filters</u> New feature Try the new Display Settings option -
Text availability Abstract Free full text Full text PubMed Commons	Items: 1 to 20 of 386 Does warming up improve surgical outcome in total hip arthroplasty? Makhdom AM, Almaawi A, Tanzer D, Tanzer M. Eur J Orthop Surg Traumatol. 2015 Dec;25(8):1265-9. doi: 10.1007/s00590-015-1679-1. Epub 2015 Aug 20.	PMC Images search for femoral offset
Reader comments Trending articles Publication dates 5 years 10 years	 PMID: 26289764 <u>Similar articles</u> <u>The effect of femoral neck osteotomy on femoral component position of a primary cementless total</u> <u>hip arthroplasty.</u> 	
Custom range Species Humans Other Animals	Dimitriou D, Tsai TY, Kwon YM. Int Orthop. 2015 Dec;39(12):2315-21. doi: 10.1007/s00264-015-2739-1. Epub 2015 Mar 20. PMID: 25787684 Similar articles The role of femoral offset and abductor lever arm in total hip arthroplasty.	
Clear all Show additional filters	 Bjørdal F, Bjørgul K. J Orthop Traumatol. 2015 Dec;16(4):325-30. doi: 10.1007/s10195-015-0358-7. Epub 2015 Jun 12. 	See more (58)


Mandatory is the preoperative planning!

Different intraoperative devices

Xue et al. Journal of Orthopaedic Surgery and Research, 2014

Dastane et al., Clin Orthop Relat Res, 2011

Barbier et al., Orthopaedics & Traumatology: Surgery & Research, 2012

Intraoperative Tests

Intraoperative X-Rays

Intraoperative Tests

"There were considerable inter-examiner differences in the range of forces generated by the shuck test. The strength of traction forces and flexion angles influenced significantly the distance of displacement of prosthetic heads."

Takao et al., Reliability of Intra-Operative Assessment of Soft Tissue Tension in Total Hip Arthroplasty. Jbjs (Br) 2012

Shuck Test. Performed by attempting to distract the total hip prosthesis in an inferior direction to assess the softtissue tension flexing the knee to 90 degrees, and releasing the lower limb to assess the amount of recoil as the knee springs back toward extension.

 Intraoperative X-Rays reduce implant malposition to 1-8%

Kuroda et al., Do we need intraoperative radiographs for positioning the femoral component in total hip arthroplasty?, Arch Orthop Trauma Surg, 2014

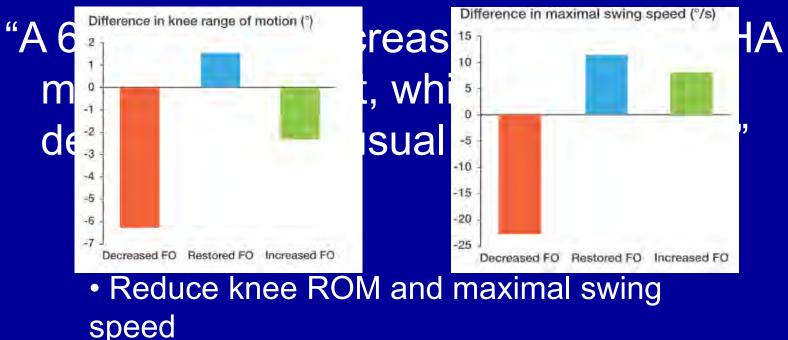
Ezzet et al., Use of intraoperative x-rays to optimize component position and leg length during total hip artrhroplasy; **The Journal of Arthroplasty, 2014**

Tischler et al., *Does Intraoperative Fluoroscopy Improve Component Positioning in Total Hip Arthroplasty?*, **Healio Orthopaedics 2015**

 FO is associated to ROM and abductor strength

Tezuka T et al.; Effects of hip joint center location and femoral offset on abductor muscle strength after total hip arthroplasty; Mod Rheumatol. 2015

Asayama I et al.; Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty.; J Arthroplasty. 2005


McCrory et al.; Effect of femoral offset on rage of motion and abductor muscle strength after total hip arthroplasty, JBJS (Br),1995

Acetabular Polyethylene Wear and Acetabular Inclination and Femoral Offset

Clin Orthop Relat Res 2009

Nick J. Little MSc, MRCS, Constant A. Busch MD, FRCS, John A. Gallagher MD, FRACS, Cecil H. Rorabeck MD, FRCSC, Robert B. Bourne MD, FRCSC

"Reproduction of a reconstructed femoral offset to within 5 mm of the native femoral offset was associated with a reduction in conventional PE wear"

The effect of femoral offset modification on gait after total hip arthroplasty

Elhadi Sariali¹, Shahnaz Klouche¹, Alexandre Mouttet², and Hugues Pascal-Moussellard¹ Acta Orthopaedica, 2014

57

Difference in Hip Prosthesis Femoral Offset Affects Hip Abductor Strength and Gait Characteristics During Obstacle Crossing

S. Chamnongkich, PhD, PTa, I. Asayama, MD, PhDb,

Orthop clin N Am, 2012

"High offset participants clear the THA limb with a higher foot-obstacle clearance (...) These observed deficits in the ability to clear obstacles underscore the importance of optimizing prosthetic placement"

 Inadequate FO reproduction is considered one of the determining factors of Hip prosthesis dislocation

TOTAL HIP REPLACEMENT: AVOIDING & MANAGING PROBLEMS Dislocation following total hip replacement CAUSES AND CURES

PJ Brooks, JBJS (Br), 2013

 Not completely understood its role in clinical outcomes

Liebs et al., 2014

Cassidy et al., 2012

Offset reproduction is related to pain, but not to functional scores

Xu B et al., 2013

Offset reproduction is related to functional scores, but not to pain

• Objective:

Investigate on the correlation between FO reproduction and Clinical Outcome

January 2011 – September 2014

• 864 THA

Did we restore patients' native FO?
Did FO reproduction play a role in THA clinical outcome?

Materials & methods

- Inclusion criteria:
 - Follow-Up longer than 24 months
 - Primary THA
 - Unilateral prosthesis
- Exclusion criteria:
 - Incomplete Follow-Up
 - Revision THA
 - Presence of contralateral prosthesis

237

Materials & methods

- One experted surgeon reviewed preoperative and postoperative X-ray control
 - Reproduced offset if FO difference with contralateral side was in a range of +/- 5mm
 - Unreproduced offset if it was the difference with contralateral side was greater than 5 mm

Materials & methods

- Two independent surgeons collected data and performed a patient evaluation through
 - Clinical examination
 X-ray (is neccessary)
 VAS
 - Harris Hip Score

- 23 patients in Unreproduced Offset group
 - Matched (according to sex and age) with 23 patients of the Reproduced offset group

	Cases	Age	Sex	Pre- operative VAS	Pre- operative HHS
Reproduced Offset	23	69 (+/- 10)	F:M=2:1	8,7 (+/- 1,3)	60,01 (+/- 13,20)
Unreproduced Offset	23	69 (+/- 10)	F:M=2:1	8,8 (+/- 1,1)	59,87 (+/- 14,01) ¹⁰⁶⁶

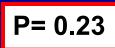
- Complication

 Reproduced Offset
 - 1 infection

– Unreproduced Offset

- 1 infection
- 1 dislocation

F-U > 24 months (31-24) VAS


Group	Respected Offset	Unrespected Offset
Mean	2,33	1,66
SD	3,61	2,46
SEM	5,23	3,56
N	23	23

P= 0,46

1068

F-U > 24 mesi (31-24) HSS

	Excelent (100 – 91)	Good (90 – 81)	Fair (80 – 71)	Poor (70 – 0)	
Reproduced	15	1	6	1	23
Unreproduced	8	3	10	2	23
	23	4	16	3	46

1069

Conclusions

• FO reproduction is not always achievable

- It could determine limb lenghtening

- The most important thing is implant stability!

Conclusions

- The surgeon has to try to reproduce FO
 - Improves abductor function
 - Reduces wear
 - Affects gait pattern

 Effects on pain and clinical function are not completely understood

Conclusions

"A systematic hip templating approch is a first step in the right direction (...) Preorative planning must be considered of primary importance and as part of the operation «hip arthroplasty»"

G. Solarino et al., *Preoperative planning* in *Primary Total Hip Replacement*, Ed. Minerva medica, **2013**

Body Mass Index, Wound Fat Depth and Radiographic Acetabular Inclination in Total Hip Arthroplasty

Mr O. Diamond, Dr E McKeever, Mr D Beverland

Musgrave Park Hospital, Belfast,

Northern Ireland

Background

- The prevalence of obesity (BMI>30) is increasing in the general UK population.
- Success and outcome of THA is affected by component orientation.
- High acetabular inclination is known to be associated with an increased risk of several problems.

The Influence of Obesity on Early Outcomes in Primary Hip Arthroplasty

Patrick K.R. Michalka, MBBS, * Riaz J.K. Khan, FRCS (Tr&Orth), FRACS (Orth), † Matthew C. Scaddan, MBBS, FRACS (Orth), * Samantha Haebich, BSc, Hons, § Nish Chirodian, FRCS (Tr&Orth), II and James A. Wimhurst, MChir, FRCS (Tr&Orth) II

Abstract: Obesity is considered an independent risk factor for adverse outcome after arthroplasty surgery. Data on 191 consecutive total hip arthroplasties were prospectively collected. Body mass index (BMI) was calculated for each patient and grouped into nonobese (BMI <30 kg/m²), obese (BMI 30-34.9 kg/m²), and morbidly obese (BMI \geq 35 kg/m²). Primary outcomes included functional improvement (Oxford hip score, 6-minute walk test and Short Form-12 Health Survey general health questionnaire) and postoperative complications. Subgroup analysis of surgeons' overall perception of operative technical difficulty was also performed. This study shows that total hip arthroplasties in obese patients were perceived, by the surgeon, to be significantly more difficult. However, this did not translate to an increased risk of complications, operation time, or blood loss, nor suboptimal implant placement. In addition, our results suggest that obese patients gain similar benefit from hip arthroplasty as do nonobese patients, but morbidly obese patients have significantly worse 6-minute walk test scores at 6 weeks. Keywords: total hip arthroplasty, obesity.

Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

Obesity in total hip arthroplasty – does it really matter? A meta-analysis

Daniël Haverkamp, Mark N Klinkenbijl, Mathijs P Somford, G H Rob Albers, and Harm M van der Vis

Department of Orthopaedic Surgery, Tergooi Ziekenhuizen, Hilversum, the Netherlands Correspondence: Daniel@drhaverkamp.com Submitted 10-11-18. Accepted 11-03-11

	Orthopaedics & Traumatology: Surgery & Research 101 (2015) 289-296					
ELSEVIER	Available online at ScienceDirect www.sciencedirect.com	Elsevier Masson France EM consulte www.em-consulte.com/en				

Original article

The influence of obesity on primary total hip arthroplasty outcomes: A meta-analysis of prospective cohort studies

W. Liu, T. Wahafu, M. Cheng, T. Cheng, Y. Zhang, X. Zhang*

Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Stxth People's Hospital, Yishan Road 600, 200233 Shanghai, China

Background

- Procedure Difficulty
 - Exposing the acetabulum
 - Inserting the acetabular component

BMI v Fat Depth

- BMI (Kg/m²)
- Fat Depth (cm)
 - Distance between the greater trochanter and the skin

Aims

 The aim of this study was to investigate if patient BMI or the fat depth of the hip wound were a risk factors for a high acetabular component inclination following THA.

Methods

1. Retrospective analysis of a consecutive series of 311 THA

2. Systematic Review

1. Consecutive Patient Analysis

- 1st December 2010 and 8th June 2011
- 311 consecutive Primary THA patients
- PACS digital x-ray
- Straight handle reamer and introducer
- 76 patients with either Fat Depth or BMI not recorded
- 235 patients available for analysis (75.6%)

Surgery

- Posterior approach
- Lateral decubitus position
- Uncemented acetabular component
- Target
 - Anteversion (TAL)
 - Operative acetabular inclination of 35°

Outcome

- Radiographic Acetabular Inclination
- Post-operative X-ray
- Supine

Analysis

 - 0 < r <0.3 weak - 0.3 < r <0.7 moderate 	Group
	– BMI
— 0.3 < r <0 .7 moderate	• <
	• >
- r > 0.7 strong	– Fat [

ping analysis

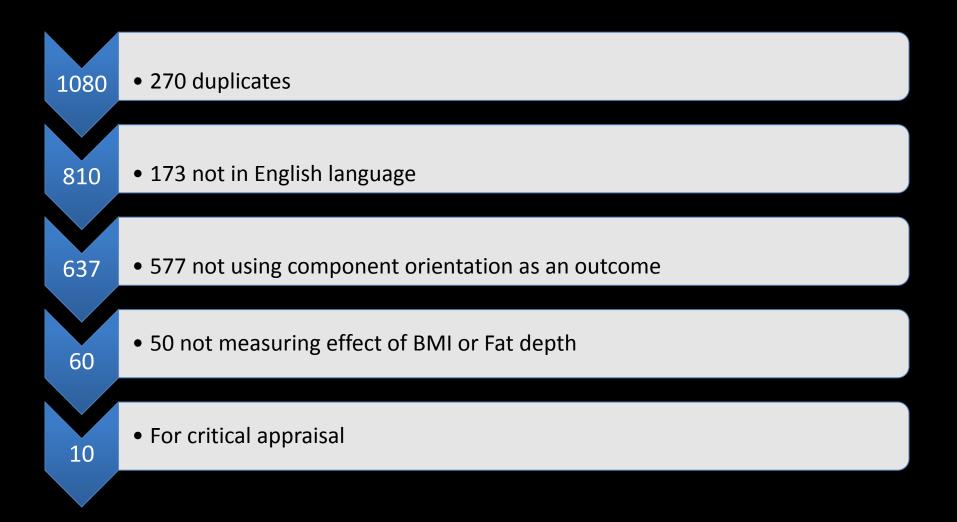
- - <25
 - >25
- Depth
 - <5cm
 - >5cm

Independent t-test

Statistical significance set at p<0.05 Excel 2007 (Microsoft, Redmond, WA) SPSS Statistics 19.0 (SPSS Inc., Chicago, Illinois).

2. Systematic Review Methods

• Search 'PICO'


P: Total Hip arthroplasty patients

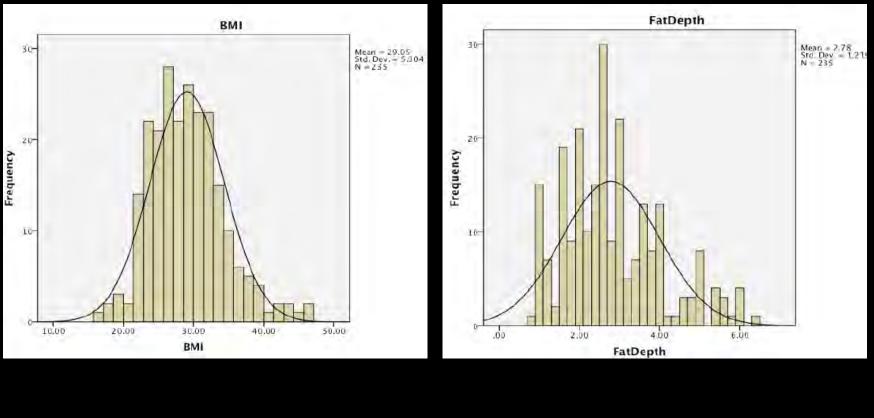
- I: BMI > 25 Kg/m2 (Or High Fat depth >5cm)
- C: BMI < 25 Kg/m2 (Low Fat depth <5cm)
- O: Radiographic acetabular inclination

2. Systematic Review Methods

MeSH Terms	Hits
((total hip arthroplasty) OR total hip replacement) AND obesity	304
((total hip arthroplasty) OR total hip replacement) AND fat	278
((total hip arthroplasty) OR total hip replacement) AND fat depth	2
((total hip arthroplasty) OR total hip replacement) AND wound depth	20
acetabular component positioning	167
acetabular component position	309
Total Abstracts reviewed	1080

2. Systematic Review Methods

Consecutive Patients

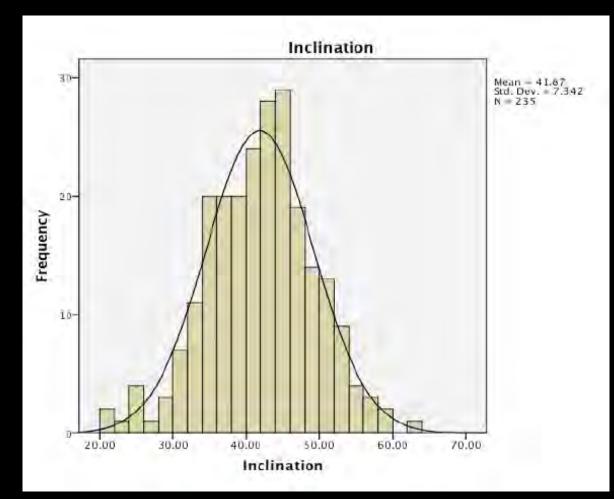

RESULTS

Patient Demographics

Number of THAs	311
Men / Women	142 / 169
Mean Age	69.5 (range 43 to 93) years
Mean duration of surgery	61.3 (range 38 to 115) minutes
Mean BMI of study population	29.1 (range 15.82- 46.44) kg/m ²
Mean hip wound fat depth	2.7 (range 0.8 to 6.3) cm
Mean radiographic acetabular inclination	41.87 [°] (range 21 to 62.5 [°]).

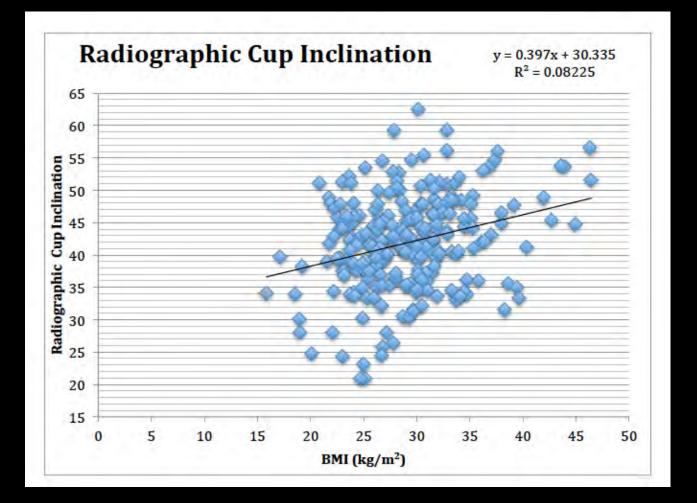
BMI (Kg/m²)

Fat Depth (cm)

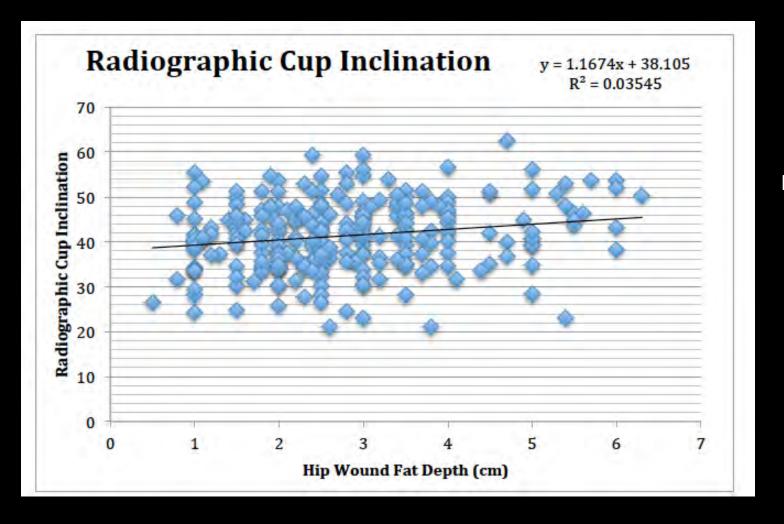


Mean	29.0
SD	5.3
Min	15.82
Max	46.4

2.8
1.21
0.8
6.3


Inclination

(Degrees)


Mean	41.9
SD	7.3
Min	21.0
Max	62.5

BMI v Inclination

r = 0.29

Fat Depth v Inclination

R = 0.19

Group Analysis

	BMI <25	BMI >25	
Number	53	182	
Mean Age	70.9 (43-93)	69.1 (43- 89)	P>0.05
Mean Op- Time (Min)	59 (38-100)	63 (40-115)	P>0.05

Group Analysis BMI

Normal BMI (<25)

- n = 53
- Mean Inclination 39.1°

Overweight/Obese (>25)

- n = 182
- Mean Inclincation 42.4°

Independent t-test

P=0.026 Mean difference 2.54, 95%CI -4.78- -0.31°

Group Analysis Fat Depth

<5cm Fat Depth

- n = 215
- Mean Inclination 41.6°

>5cm Fat Depth

- n = 20
- Mean Inclincation 45.3°

Independent t-test

P= 0.03 Mean difference=3.70, 95%CI 0.34-7.06°

RESULTS

Paper	Study Type	Patients (n)	Grouping Variable (BMI)	Conclusion
Todkar, 2008, Acta Orth Belg	Case Series	72	<25/ >25>30 / >30	No Difference
McBride, 2012 ANZ J Surg	Case Series	102	<25 >25	Difference
Tsukada, 2010, J of Japan Orth Ass	Case Series (NAV)	69	<25 >25	No Difference
Pirard, 2007, Hip Int	Case Series	323	Correlation Analysis	No Difference
Callaman, 2011 CORR	Case Series	1603	<25/ >25>30 / >30	Obesity found as risk factor
Von Roth, 2011 Hip Int	Case Series	50	<25 >25	No Difference
McArthur, 2014 Hip Int	Matched Cohort Study	240	<30 >30	No Difference
Gupta, 2015 J Arthroplasty	Case Series	105	<30/ >30<35 / >35	No Difference
Barrack, 2013 JBJSAm	Case Series	1549	Odds ratio	Difference
Elson, 2013 J Arthroplasty	Matched Cohort Study	422	<35 >35	Difference
Current Study	Case Series	235	Correlation Analysis + <25 / >25	Difference

Discussion

 Weak correlations were found in the Pearson's Correlation analysis showing an r= 0.29 for BMI and 0.19 for fat depth

 Mean acetabular component inclination was higher for patients with a BMI of 25 or more (mean=42.44⁰) compared to patients with a normal BMI (mean=39.09⁰) (P=0.026).

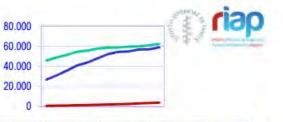
Conclusions

- Obesity is an increasing problem
- Component orientation is vital
- BMI appears to be a greater risk factor than wound fat depth for a high acetabular inclination
- The problem may not be as simple as impingement of the introducer handle on the soft tissue
- Surgery is more difficult and time consuming
- Re-audit of current practice, assessing the introduction of angled reamers and offset introducer handle

OSPEDALE S.G. CALIBITA FATEBENEFRATELLI ISOLA TIBERINA

U.O.C. Ortopedia e Traumatologia Direttore: Dott. V.Sessa

Aziendo Ospedaliera di Rilievo Nazionale e di Rita Specializzazione


U.O.C. Ortopedia e Traumatologia Direttore G: Restuccia

Scuola di Specializzazione in ORTOPEDIA e TRAUMATOLOGIA Università degli Studi di MESSINIA Direttore : M. A. ROSA

Dysmetry after Hip Arthroplasty

G. Miloro, A. Merenda, G. Restuccia, V. Sessa and M.A. Rosa

Interventi di sostituzione protesica in Italia Fonte: Dati SDO(2001-2012)

2,2

	Cod.	Denon	ninazione	2001	2003	2005	2006	2007	2008	2009	2010	2011	2012	%(°)
45.656	51	1.241	55.516	57.	521	58.555	58	.679	59.39	97	59.631	60.	544	62.153
	81.52	Sostitu	zione parziale	20.732	20.981	22.380	22.386	22.289	23.034	22.506	23.916	24.148	24.275	1,6
		Rivesti	mento	n.a	n.a	n.a	n.a	n.a	n.a	303	476	157	94	-32,3
	(*)	(*) Revisione		5,969	6.494	6.913	7.170	7.229	7.164	7.264	7.342	7.848	8.249	2,7
		Totale	Anca	72.357	78.716	84.809	87.077	88.073	88.877	89.167	90.889	92.707	94.771	2,1
	(°) Incremento medio annuo e (*) Anca: 81.53, 00.70, 00.71, 0			ercentuale										

Every year in Italy about 100,000 operations of hip prostheses are implanted and the number is increasing at a rate > 2%.

Successful total hip arthroplasty relieves pain and restores functions, restoring proper hip biomechanics and equalizing limb lengths.

LIMB LENGTH DISCREPANCY IS A SIGNIFICANT SOURCE OF PATIENT DISSATISFACTION DUE TO ITS ASSOCIATION WITH **COMPLICATIONS**

HYPERMETRIA — nerve palsy, secondary contractures, abnormal gait, low back pain

impingment with pain, secondary contractures ,abnormal gait

In USA is the second most frequent cause in claims for damages in prosthetic surgery.

(Sarin VK, Pratt VR, Bradley GW. Accurate femur repositioning is critical during intraoperative total hip arthroplasty lenght and offset assessment. J Arthroplasty 2005; 20:887-91).

MULTICENTRIC RETROSPECTIVE ANALYSIS OF DISMETRY AFTER HIP ARTHROPLASTY

■ Inclusion criteria: -COXARTHROSIS

Exclusion criteria:
 -CONTROLATERAL HIP ARTHROPLASTY
 -DYSPLASTIC PATOLOGY
 -RHEUMATOLOGIC PATOLOGY
 -TRAUMATIC PATOLOGY

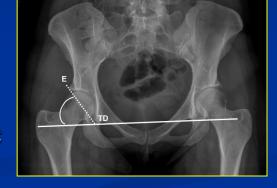
Materials and methods

77 pz: 65 - 80 y> 32 M > 45 F

Dismetry >1cm :

12 cases

Materials and methods


77 PZ (ANTERIOR / LATERAL APPROACHES)

12 pz DYSMETRIC

11 PZ hypermetric 1 PZ IPOMETRIC

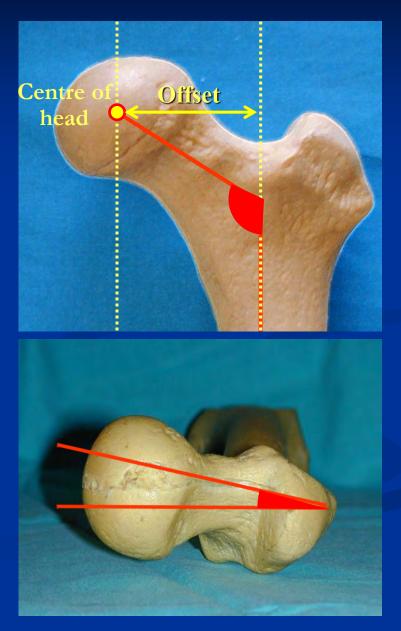
Radiografic evaluation

The parameters we examined were

Inclination angle

ACETABULAR COMPONENT

Acetabular offset

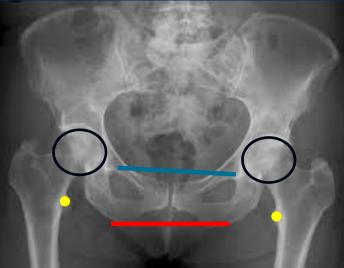

Radiografic evaluation

FEMORAL COMPONENT

Cervical diaphyseal angle

Femoral offset

Anteversion



PRE - OPERATIVE PLANNING

On X-ray pelvic in anteroposterior projection we calculated the difference in lenght by joining a series of landmarks:

PELVIC REFERENCES:

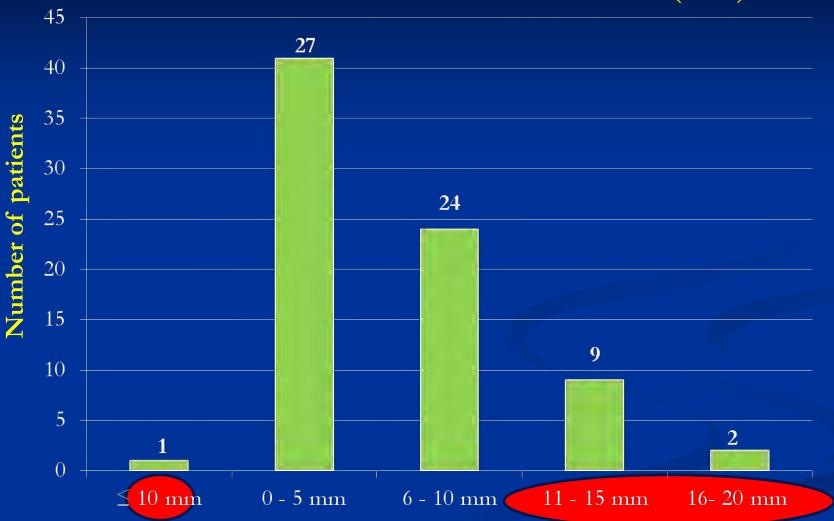
bisischiatic line interdrop line

FEMORAL REFERENCES:

Distance between femoral rotation centers Distance between lesser trochanters

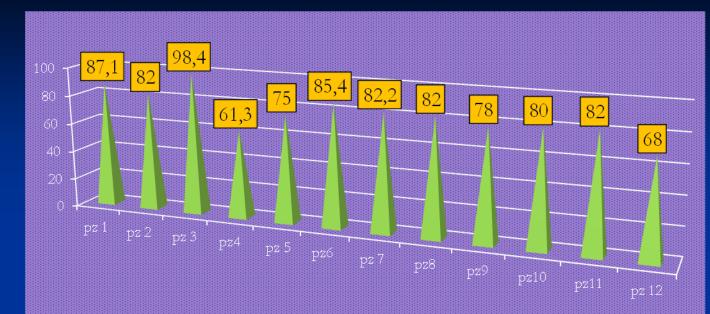
Preoperative Radiographic assessment of limb – lenght discrepancy in total hip arthroplasty -Geert Meermans MD, Ahmad Malik MRCS, Johan Witt FRCS, Fares Haddad FRCS

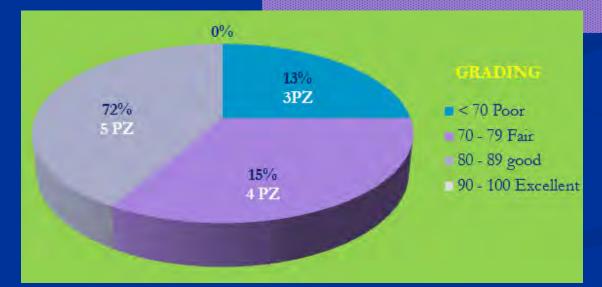
INTRAOPERATIVE MEASUREMENTS


Distance between Steinman nail inserted into iliac wing and a landmark Distance between lesser trochanter and morse taper to the base of greater trochanter

Comparison between osteotomized head and neck and morse taper

POST-OPERATIVE RADIOGRAPHIC EVALUATION





LIMB LENGHT DISCREPANCY (mm)

	Cervical diaphyseal angle (110° - 140°)		Inclination acetabular angle (35°-55°)		Lever arm (mm)		Femoral Offset (31 -44mm)		Acetabular offset (mm)		Dismetry (mm)
SIDE	Ор	not op	op	not op	op	not op	op	not op	op	not op	
LEFT	135°	135°	50°	50°	61	57	38	39	32	39	+12
RIGHT	140°	120°	60°	53°	48	51	35	37	41	36	+12
RIGHT	130°	118 °	42°	65°	55	65	46	55	45	41	+10
RIGHT	125°	130°	48°	58°	54	43	48	34	33	30	+13
RIGHT	135°	118 °	48°	53°	66	69	54	54	40	37	+11
LEFT	130°	118 °	50°	60°	58	64	41	48	41	40	+12
RIGHT	130°	130°	53°	54°	53	60	43	46	38	44	+16
RIGHT	130°	125°	50°	60°	50	50	33	40	35	30	+12
RIGHT	130	120°	60°	60°	40	30	30	30	30	25	+11
RIGHT	130°	130°	50°	50°	50	50	40	35	40	55	-10
LEFT	130°	120°	50°	50°	65	60	50	50	40	40	+10
LEFT	130°	120°	35°	50°	55	60	45	45	40	45	+20

WOMAC SCORE

HARRIS HIP SCORE

Evaluation : quality of life, symptoms, stiffness, pain, daily activities

CONCLUSIONS

Nowadays patients' demands are increasing and the Gold Standard is the return to a normal condition relating to age and life expectancy.

Preoperative and intraoperative planning are important to contain technical mistakes and limb length discrepancy.

Sometimes limb lengthening is wanted by surgeon with the aim to implant in the future a controlateral total hip arthroplasty.

THANK YOU

Bilateral Total Hip Arthroplasty: One- Stage versus Two-Stage Procedure

INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA

Afshin Taheriazam

Department of orthopedics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran

International Combined Meeting BHS-SIdA, Milan - 26/27 November 2015

Introduction:

O Disabling hip pain requiring THA can have variety of etiologies, many of which have an incidence of bilaterality.

Introduction:

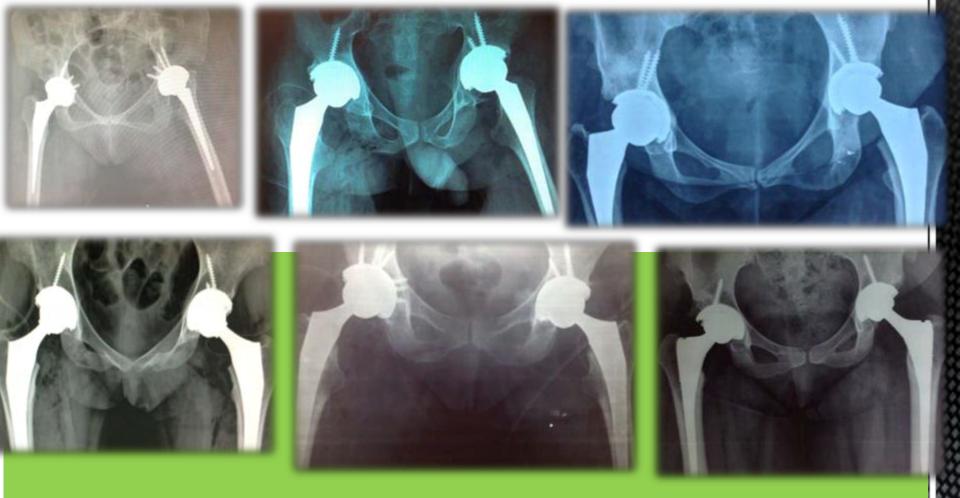
 Despite several studies, controversies prevailed about the rate of complications following one-stage and two-stage bilateral total hip arthroplasty (THA).

Introduction:

- Lindberg and Sjöstrand (1972) estimated that approximately one-third of patients with primary osteoarthritis of the hips would need bilateral surgery.¹
- Since Ritter and Randolph (1976) performed the first detailed study of the functional outcome of simultaneous bilateral THA, there has been an ongoing discussion regarding benefits and disadvantages of one stage versus two-stage procedures.²

INTERNATIONAL COMBINED MEETING

BRITISH HIP SOCIETY


1125

1.Lindberg L, Sjostrand LO: [The future needs of hip surgery. Prognosis for Lund 1972-1980]. Lakartidningen 1972,

69(37):4109-4112.

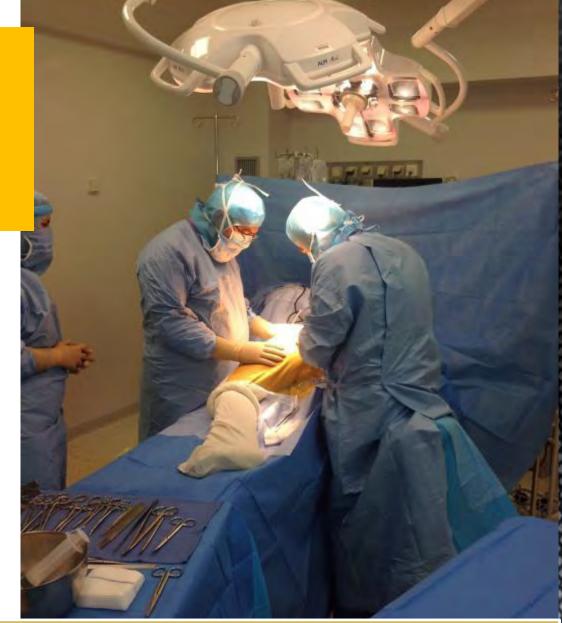
2. Ritter MA, Randolph JC: Bilateral total hip arthroplasty: a simultaneous procedure. Acta Orthop Scand 1976, 47(2):203-208.

The number of single-stage bilateral total hip arthroplasties done each year is increasing.

INTERNATIONAL COMBINED MEETING

BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA

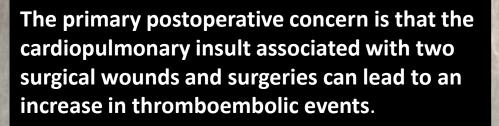
Simultaneous bilateral hip replacement reveals superior outcome and fewer complications than two-stage procedures: a prospective study including 1819 patients and 5801 follow-ups from a total joint replacement registry



BMC Musculoskelet Disord, 11 (2010), p. 245

1126

Is one-stage bilateral sequential total hip replacement as safe as unilateral total hip replacement?



Simultaneous bilateral versus unilateral total hip arthroplasty an outcomes analysis

whether the perioperative morbidity and mortality of patients having bilateral single-stage total hip arthroplasties would be increased.???

whether simultaneous bilateral sequential total hip replacement (THR) would increase the rate of mortality and complications compared with unilateral THR in both low and high-risk groups of patients. ???

INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA

Hospital Stay and Cost:

The length of hospital stay in the single-stage group was **significantly shorter** than that in the two-stage patients.

this would certainly have an impact in reducing the economic burden.(Cost=25-30% reduction)

The economic impact of lost employment productivity with two recuperative periods, although difficult to measure accurately, is likely reduced with single-stage THA

1129

J Bone Joint Surg Br March 2006 vol. 88-B

no. 3 298-303

There are no absolute indications for a single-stage bilateral THA compared with staged procedures.

The strongest indication is severe disabling bilateral arthritis of the hip in a medically fit patient.

J Am Acad Orthop Surg. 2002 May-Jun;10(3):217-21

A relative indication is the existence of a condition that may impede the rehabilitation process. (hip flexion contracture)

Another relative indication for single-stage bilateral THA is when lengthening during the hip reconstruction on the more symptomatic side would create an unacceptable limb-length inequality.

1132

Patient preference is important

An elderly patient with significant comorbidities (eg, heart disease,pulmonary insufficiency, or diabetes) usually **is not** a candidate for

single-stage bilateral THA.

according to Schiessel patients prefer the simultaneous procedure because they undergo the process of operation, mobilization, and rehabilitation only once [11]. A better functional outcome after one-stage procedures is also reported for very stiff hips with a preoperative range of motion below 50°

Bilateral THA is often

performed on a hip table with the patient in the lateral decubitus position, with all bony prominences well padded and an axillary roll placed appropriately.

Surgical exposure :hardinge or posterolateral approach /in supine position by anterior approach

R

Review of articles:

Dine- or Two-Stage Bilateral Total Hip Replacement	Australia more a france datase cores Australia and Austral						
data-Addin, MD,* 7, Stayona, MD,* 1, A, Brdt, MD,† and D. W. Marray, FRCS*	Officient ANTICLE One-stage bilateral total hip arthroplasty: Functional outcomes and complications in 112 patients						
Het Hit met dess witschen Histoppel har result auf der dasse im 1 and 2. The staff method by increasing high performance in 2000 data with an encoder before an element of the staff of the staff of the staff of the staff and encoder the staff of the 100 min angewein staff. (100 min and staff of the st	Paulicines C. Trojani **, T. d'Ollionne*, D. Straggglia*, C. Weipeau*, M. Carles*, J. 4., Prudhon*, the French Society for the Hip and Kose (SPHG)* ^I Operation of Dissertion for the Society for the Hip and Kose (SPHG)* ^I Operation of Dissertion form ^I Operation of Dissertion form ^I Operation of Dissertion form ^I Operation of Dissertion form ^I Operation of Dissertion of Dissertion form ^I Operation of Dissertion of Dissertion form ^I Operation of Dissertion of Dissertion of Dissert Format Contraction of Dissert ^I Operation (Dissertion of Dissertion of Dissertion of Dissert ^I Operation (Dissertion of Dissert of Dissert Operation Operation of Dissert Operation of Dissert ^I Operation (Dissert (Dissert of Dissert of Dissert Operation Operation of Dissert Opera						
In of patients undergrams TBS require blocked TBS is a less and the blocked TBS is using the document block. There is consult is suggested using the document block using the document block using the document block to sugge productions which is the suggest to document block to sugge the document block to suggest to suggest the document block to suggest the doc	KEYYORGS Example for a loss a sequence of the set of						
a Gene, Joad, Janz Organis, Joans He, Sanda Davaree data remote certain control on the strates response to the second Development of the Control of the strates response to the second Development and the second Development of Development	* Community address for - Date of Edge of the Description of the Composition of the Types, Address of the Composition of the Composition of the Composition of the Composition of the Composition of the Composition of the Address of the Composition of the Com						
BRITISH H	OMBINED MEETING IP SOCIETY NA DELL'ANCA						

35

A substantial pro-total hig replaces is not clean submitreplacements in a approach in bette equation of Late ions studies inthiotea bili 7115 choose a 2-states a reasher, list or approach hy erdore have ha a total to select a

Soft HIP

Review of articles:

RESEARCH ANTICLE

Simultaneous bilateral hip replacement reveals superior outcome and fewer complications than two-stage procedures: a prospective study including 1819 patients and 5801 follow-ups from a total joint replacement registry

Frank (planes) - meaning body, Falan P. Smith, "Smith Defention Markov Medical Defention Control of Markov Control of Con

Altorest

Bolgroum (1) Construction of the state of

Considering and the same of a second se

Background .

Total new explorations represent a large part of large exlary extremptions contrast, see the space particular territlege extremptions (2014) has become a large extreme the re-constraining and gravitation and appendix of large A partimental particular of appendix interparties and started (1) and high arXiv:physical equations are interparted by the second large (2.1, %) are a fixed as a constraint of territorial black and (2.1, %) are a fixed as a constraint of territorial black and (2.1, %) are a fixed as a constraint of territorial black.

The first final distribution (really of the linear regulation of the strength tension is built of 150 G. (built is the intermediate of the strength tension is built of 150 G. (built is the intermediate of easy of the strength of the strengthom strengthom strengthom str

descripted documents

This second the part

() Histod Cents

SOCIET L

INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA

Andream et al. Journal of Orthopoedic Surgery and American's 2016, \$191 MID://www.jost.ortine.com/content/\$1591

Open Access

Bilateral hip arthroplasty: is 1-week staging the optimum strategy?

Henry D Atkinson^(2*), Christopher A Bailey², Charles A Willis-Owen², Poper D Oakeshot²

Abstract

Seventy-nine patients undervent bilateral hip arthropiasty staged either at 1 week (Group II or after greater new via (as suggested by the patients, mean 44 weeks, range 15-88 weeks) (Group 2), over a five year period of the institution. Single eight patients (29 bilateral hip resultions) and 39 total hip replacements) completed gues or native regarding their post-operative recovery, complications and overall latituding with the staging of their surgery.

There was no significant age or ASA grade difference between the panetic groups. Complication rates in the way groups were similar and overal satisfacton rates were B44 in Group 1 (n = 12) and 89% in Group 2 (n = 30). Cumulative height all radius is statistication rates were B44 in Group 1 (n = 12) and 89% in Group 2 (n = 30). Limitative height all radius is that were significantly longer in Group 1 patients (11.9 days is 91 days)(p < 0.01), this was true for both hip resultating and total hip arthropathy patients, however resultating patients stars were significantly shorter in both groups (p < 0.01). Postperative pain resolved earlier in Group 1 patients (p = 0.05). The mean time to return to part time work was 164 weeks (15.8 and 13.1) weeks (p < 0.01). The mean time to return to part time work was 164 weeks (p < 0.01). The mean time to return to part time work was 164 weeks (p < 0.01). The time to return to fuller work was significantly shorter for Group 1.2) weeks (p < 0.01), weeks (p < 0.01), weeks (p < 0.01), the to return to fuller work was significantly shorter for Group 1.2) and p < 0.05. The time to return to fuller work was significantly shorter for Group 1.2) and partitions (p < 0.05). The time to return to fuller work was significantly shorter for Group 1.2) and p < 0.05. The time to return to fuller work was significantly shorter for Group 1.2) and p < 0.05 weeks for Group 2.2) weeks for Group 2.2(p < 0.05). The time to return to both full and partitime work was significantly shorter in total in the day of significant shorter for Group 1.2) and the significant shorter for Group 1.2) and the significant shorter is the starter of p < 0.05. The time to return to both full and partitime work was significantly shorter in total in total significant shorter for Group 1.2) and 1.3 is 1.9 weeks (p = 0.05). The time to return to both full explaned starter ($2.00 \times significant shorter for Group 2.2) is 1.3 weeks (<math>p = 0.05$). For Group 2.2) weeks (p = 0.05 and 1.3

Hip resultating patients in Group 2 had significantly shorter durators of postoperative pain and were able to return to pain time and full time work scorer than total hip anthopizsty potents. There was a general rend rewards a latter recovery and resumption of normal activities following the second operation in Group 2 patients, compared with the first operation.

Blateral hip anthroplasty staged at a Tweek interval resulted in an earlier resolution of hip bain, and an earlier return to full-time work (periodatic following total hip replacement surgery), with high levels of patient satisfaction and no increased risk in complications however the hospital length of stay was significantly longer. The decision for the timing of staged bilateal surgery should be made in conjunction with the patient, making adjustments to accommodate their occusational needs and functional demands.

Introduction

The optimum timing for bildreral hip arthroplasty is still under dehate. Single-optisule sequential hilateral hip arthroplasty though potentially financially advantagrous and with shorter rehabilitation periods than staged arthroplasty [1-6], has been associated with a sigificantly increased risk of pulmorary complications,

Correspondence: duscht@gmail.com

Department of Learns and Ornepaedes and nexts London Sports Orthopaedes, North Middleare University Hespital, Storing Was, London Mid-US, UK post-operative anaemia and heterotopic ossification [6-12].

Sequential balareral total hig neglacements during the same hospitalisation period have been advocated to avoid these potential complications whilst maintaining the functional benefits of near simultaneous surgery; and good dinical results and implant survivorship has been previously reported for these patients [6].

This study compared the post-operative recovery, complications and overall satisfaction rates of patients undergoing one-week staged bilateral hip arthropisty

Review of articles:

Single-Stage Bilateral Total Hip Arthroplasty

Withow Mocaulay, MD, Eduards A. Salvat, MD, Thomas P. Scoke, MD, and Paul M. Fellers, MD

Abstract

The number of single-size bilderal lobs hip arthroplastics done as it uses to increasing. The rial of perturbative complications in modulity stable patients is acceptable; complications are apprecisioned 1.3 times more frequent time with unlished total hip articoplasty. Alticoph there are no absolute indications for a single-stage bilateral total departersphere, the propulses to sensally contracted cat-rol or patients with such constrainties as Apert disease, publicancy imaginaries, or Adretes, and A is atvoluting costsuindusted in patients with a disconnected patient ductus attractions or weptil defect. The primary participantities concern in that the undependentiary standt associated with two energical sciences and exithe two attractions were provided and and the two articles and an ar-price one land to an incrusse in the formhearthich provide. There, the outper lange blacked doub articles production of the theory and the second angle of bacteria back articles places, the device is undergo engine-step blacked back by articles point of the places, the device is undergo engine-step blacked back by articles point of the second back of the undergo engine-step blacked back by articles point of the second back of the undergo engine-step blacked back by articles point of the second back of the undergo engine-step blacked back by articles point of the second back of the undergo engine step blacked back by articles point of the second back of the second back of the second back by articles point of the second back of the s is one that must be made in concert with the policie.

Chamley! in 1971 published a temine of 50 consecutive patients in whom Chamley had done bildered low-friction arthreelaste. There were an equal number of mon and woment, available age was 61.4 years Isonge, 47 to 74 yearst. Eighty per cred had primary or accordary 03. the semander of the ration's had hip disorders resulting from inflammatery issues. Jaffe and Chamley concluded that the example adds tional rok of complications with Indutenal compared with an internal low-fraction arthroplasty was offset

sistuice of autiliasia, a tim

ale recuperative period, and an

overall decreased length of stay.

The minimal increase in talk was

largely attributable to the experi-

J Am Acad Orthop Surg 200250217-221 by the advantages of one-time

Disabling hip pain requiring total DA org, secondary to trauma, oneohip orthriplasty (THA) can have a nerrosis, developmental dysplasia tareity of atalogue, many of which have an incidence of bilaterality. Bilateral top disease can be caused of the hip, Legg-Calud-Dethes due ness, or slopped capital ferrorial op-physic, inflammatory processes togby a single disorder or by a combi-nation of two discrete processes. Primary colouardrelia KIM of the hip. the most common disorder cluted with severe hip pain and disability in the elderly, has a preva-lence of 3.15 and occurs bilaterally in 67% of patients.¹ Ebrawalisad athentis of the hip, although less common with an incidence of at least 1.2 per 1,000 per year, atherts high bilaterally in greater than NPL of patients. In a review of bilateral TRAs done as a single stage, the discrossis was 128, in 140 of 244 hips (STG) and the unaled arthretis in 42 at 244 heps (1751)³. Other atologues of hip disease include accordary by Chardey in 1863.5 Julle and

possistic arthratic antipiosing spon-dylatic, or Crohn's diseased, and metabolic processes leg. Gaucher's disease. Paget's disease, indecesses, et hetextuonatoes1. Development of the Single-Stage Bilatetal Appreach

Reprint regionale (in: Manualog diss (1986, FF) 11th Alam, 622 Mar 2000h Almaij Mar Farb, 515 20022 Lipsonth' in 200 several a series of 307 palarets who had and ergone simultaneous reconstructive saiperty built as established for bligheral hip disease. But single-stage blaieral THA nas initially reported Caparight 2012 By the American Academy of Otherpastic Surgroup.

Vol 10 No.2 Mapliane 2002

SHHIP

ewind efficiency of the surgical team, which did approximately 1,008 hip providures per year. Dr. Manufay is Director, Costo for Hig and fairs' Replacement, Education Determiny, New York, 1971, Dr. Schart in Director, Hig and Janes Service, Flogadia Service, Augurta, Mare York, Dr. Scale as Chief, Opperfused of Deficipandic Faceprey, Respited for Type of Surgery, 25, Policie in Altendary Deficipants Surgers, Magnild for Special Surgery,

From the Department of Orthopardic Isorgery, NYO Unput for Joint Photos Ant York NE

Automated April 4, 2011; accepted Gentler 34, 2011. The Conflict of interest statement associated with the article can be

found at doe to turn 5 with 2011 10029.

The Journal of Arthroplasty Vol. 27 No. 7 2012

Simultaneous Bilateral Total Hip Arthroplasty With Hydroxyapatite-Coated Implants: A 20-Year Follow-Up

Ran Schwarzkopf, MD, MSc,* Patrick Olivieri, BSc,* and William L. Jaffe, MD

Abstract: Bilateral hip anthroplasty has been reported to be a safe and effective way to tocat bilateral hip arthritis in a selective group of patients. We report a follow-up of 30 patients who underwent simultaneous bilateral total hip arthroplasty with hydroxyapatite implants and were followed for an average of 19.4 years. Patients had an average Barris 10p Score of 90 at the latest follow-up (range, 78 99). The average Western Omario and McMaster Universities Arthruis Index questionnaire index score was 12 (range, 0.41), with high functional results on the 12 from Short Form Health Survey (SF-12) and Oxford 12 questioners. Using the Kaplan-Meier survivorship analysis, with revision for any reason as an end point, survivorship was 94% at 12 years, 88% at 15 years, 74% at 18 years, and 61% at 23 years. All revisions were for the acetabular component, and the survivorship for the lemonal component was 100% throughout the 23-year period. We conclude that bilateral uncemented total hig arthroplasty can provide satisfactory long-term clinical, radiological, and functional outcomes in patients even with older generation polyethylene liners and stem designs. Keywords: bilateral total hip arthroplasty, hydroxyapathe, functional score, longevity. Ø 2012 Elsevier Ioc. All rights reserved.

Total hip arthroplasty has been shown to be a successful procedure for patients with hip arthritis [1]. The benefits of total joint arthroplasty as a treatment of hip arthritis have been well characterized. Multiple studies have demonstrated that, following total joint arthroplasty, patients experience significant quantitative and qualitative improvement in both their physical function and quality of life [2-4].

To meet the increasing desire of patients to remain as active as possible, bilateral total hip arthroplasty has been the staple of treatment for a selective group of patients for some time [4-6]. Although there are increased risks such as blood loss, surgical site infection, thrombosis, and dislocation, these risks have been far outweighed by the function and quality of life gained by most patients following the surgery [7-9]. Bilateral total hip arthroplasty has been reported in the literature to be a safe an effective way to treat bilateral hip arthritis in a selective group of patients [3,5,10]. Bilateral hip arthroplasty is a major surgery and should be reserved for younger, healthier patients who can medically undergo such a demanding and prolonged surgery [3,5,11]. Long term failure of cemented total hip arthroplasty is

usually due to aseptic loosening caused by particle wear and osteolysis. Hydroxyapatite-coated hip implants were developed with the explicit goal of avoiding this problem and preserving bone in younger, more active patients [12]. These implants facilitate a biological bond between the implant and bone [11,13,14].

Long term follow-up studies are essential to determine the effectiveness and durability of a procedure. Singlesurgeon series have been noted to be the ideal, with an increased rate of failure noted in multisurgeon series [10,15-20]. The purpose of this study was to analyze the clinical, functional, and radiographic outcomes of a single-surgeon patient cohort of bilateral simultaneous total hip arthroplasty using hydroxyapathe-coated implants at NYU Hospital for Joint Diseases. In March 1998, we reported the results of 30 patients, 60 hips, who underwent simultaneous bilateral total hip arthroplasty with hydroxyapatite components and were followed for 24 to 76 months [11]. We have now reviewed the same cohort at a mean of 20 years (range, 18-23 years).

37

The fitness of the patients was categorised according to the ASA system

. Patients of ASA grade 1 and grade 2 were categorised as 'low risk' and those of ASA grade 3 and grade 4 as 'high risk'

The most symptomatic hip is always treated first

INTERNATIONAL COMBINED MEETING **BRITISH HIP SOCIETY** SOCIETÀ ITALIANA DELL'ANCA

The decision as to whether cemented or cementless fixation to be used is made at the time of admission, depending upon the quality of the bone stock and the age of the patient. All patients with good bone stock and less than 65 years of age undergo cementless arthroplasty. The press-fit technique of

cabala shen myolycanaci

insertion of the a reaming of the a impaction of the supplementary f in most cases.

At the end of the procedure, a pelvic radiograph obtain in the operating room. patients may have a suction drain placed in each hip and receive prophylactic antibiotic therapy, as well as thromboembolism prevention with low-molecular-weight heparin for 30 days.

Three out of 10 articles noticed a higher need for blood transfusion in the simultaneous group, whereas the article by Parvizi described a lower need

Complication rates in review of articles:

there was no significant difference in the incidence of major complications between high-risk (ASA 3 and 4) and low-risk (ASA 1 and 2) subgroups in both groups, no valid conclusions could be drawn since the number of patients in the high-risk subgroup was small compared with that in the low-risk subgroup.

Berend documented a significantly higher re-operation rate, more inpatient complications and adverse events in patients undergoing simultaneous bilateral THA in the lateral decubitus position although the author does not list them [5]. On the other hand, Parvizi reported fewer complications in the simultaneous group [8]. The remaining literature describes no significant differences in complication rates between simultaneous and two-stage bilateral THA.

Parvizi J, Tarity TD, Sheikh E, Sharkey PF, Hozack WJ, Rothman RH: Bilateral total hip arthroplasty: one-stage versus two-stage procedures.

Clin Orthop Relat Res 2006, 453:137-141

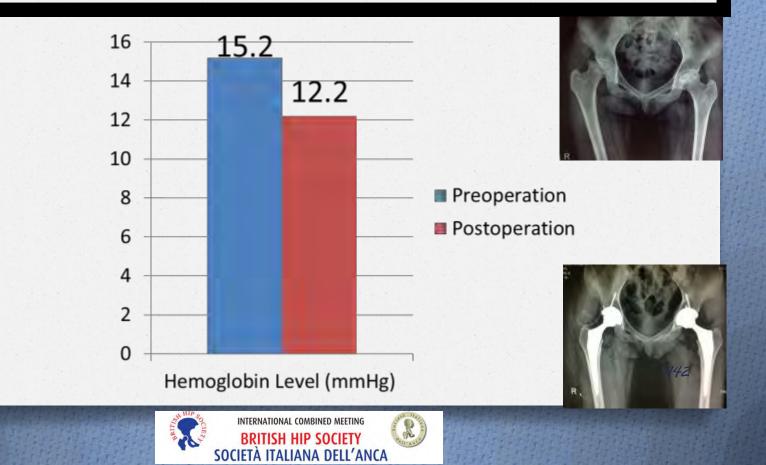
In our prospective study:

we compared the complications and functional outcomes of one-stage and two-stage procedures.

One hundred and eighty patients (ASA class I or II) with bilateral hip osteoarthritis were assigned randomly to two equal groups. Two groups were matched in term of age and sex.

All of the surgeries were performed through the Harding approach using uncemented implants.

In two-stage procedures, surgeries were performed with 6 months to one year interval. All patients were evaluated one year postoperatively. The Harris hip score averaged 84.1 ± 12.6 and 82.6 ± 15.3 in one-stage and two-stage groups, respectively (p=0.528). The hospital stay was significantly longer in two-stage group (9.8±1.1 versus 4.9 ± 0.8 days.^{V,4/}



INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY CIETÀ ITALIANA DELL'ANCA

In our prospective study:

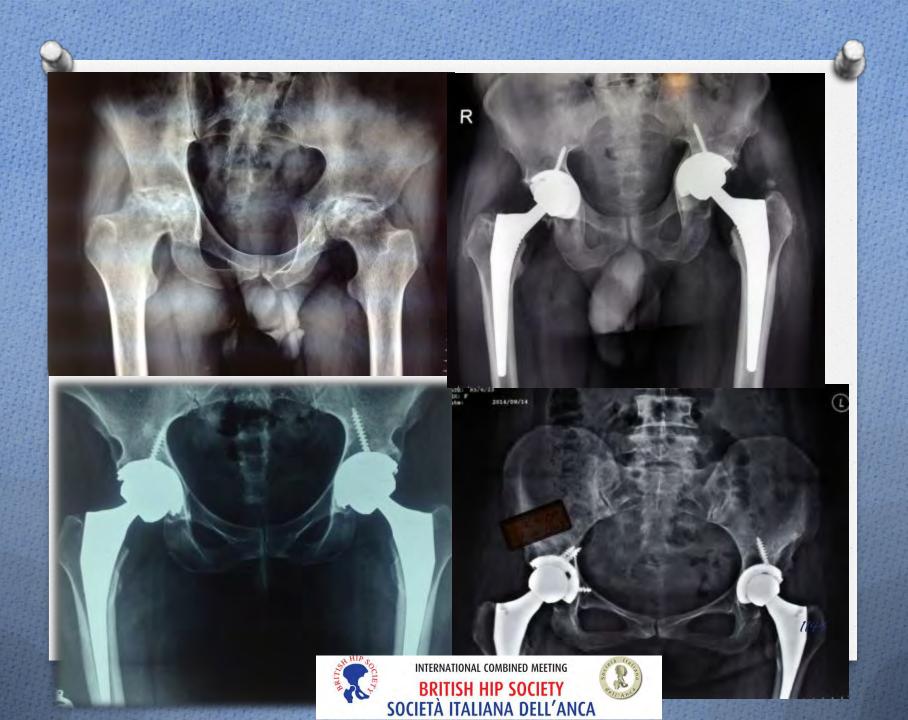
The cumulative hemoglobin drop and number of transfused blood units were the same.

Complications:

One patient in each group developed symptomatic deep venous thrombosis and managed successfully.

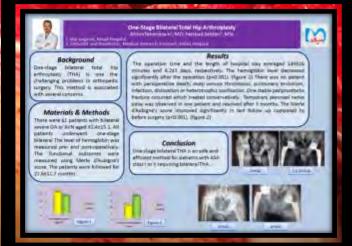
There was no patient with perioperative death, pulmonary embolism, infection, dislocation, periprosthetic fracture or heterotrophic ossification.

No patient required reoperation.


Two patients in one-stage group developed unilateral temporary peroneal nerve palsy resolved after 3 and 4 months.

SOCIE 71

1143



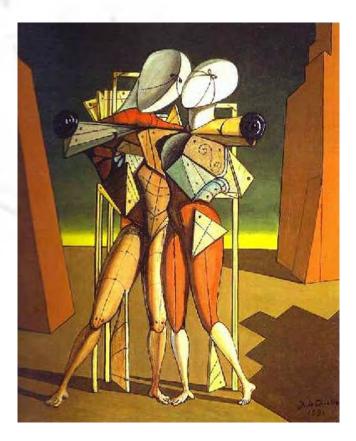
INTERNATIONAL COMBINED MEETING **BRITISH HIP SOCIETY** SOCIETÀ ITALIANA DELL'ANCA

R

One-stage bilateral THA is an safe and efficient method for patients with ASA class I or II requiring bilateral THA.

 We recommend to perform one-stage bilateral THA for healthy patients with ASA class I or II.

INTERNATIONAL COMBINED MEETING BRITISH HIP SOCIETY SOCIETÀ ITALIANA DELL'ANCA



Robotic surgery applied to total hip arthroplasty: preliminary results and technical notes

P Caldora, L Ciampalini, P Guastafierro, D Lup, R Redi, P De Biase

C.O.R.A.

Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

- Not orthopaedic robotic surgery purpose:
- ✓ <u>Teleoperative precision and modulation of the</u> <u>surgeon manuality</u>

- Orthopaedic robotic surgery purpose:
- Accuracy in the implant placement
- ✓ <u>Mistakes limitation</u>

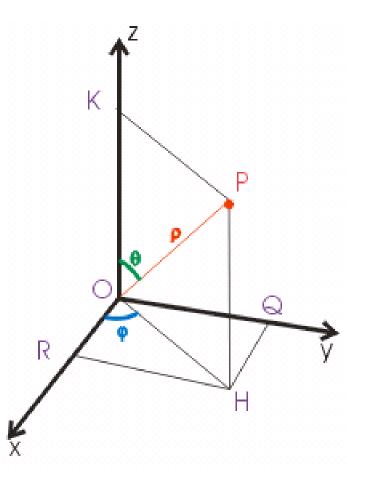
Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

2006: first case USA 2008: 500 cases USA 2009: 1000 casesUSA 2013: 30.000 over the world 2014: > 40.000 over the world

Five centers in Italy

2011: first case 2015: 1.457 patients

1260 knees 197 hips



C.O.R.A. Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

POTENTIAL LEVEL OF PRECISION

☑ Below one millimeter

☑ One degree

C.O.R.A. Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

Accuracy

Precision

Mistakes limitation

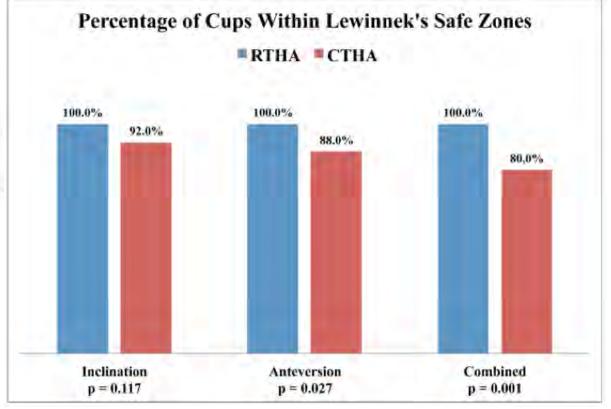
☑ Safety

Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

Indications

- ✓ THA
- ✓ UKA

partial knee replacement -medial -lateral -patellofemoral


Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

Clin Orthop Relat Res. 2014 Jan;472(1):329-36. doi: 10.1007/s11999-013-3253-7. Epub 2013 Aug 29.

Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study.

Domb BG¹, El Bitar YF, Sadik AY, Stake CE, Botser IB.

160 THA62 Conventional THA69 Robotic THA29 RX guided THA

Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

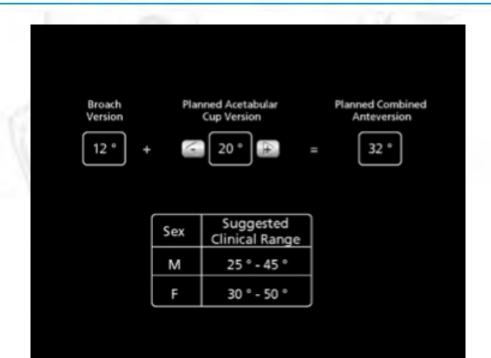
Technical Notes

- Preop CT
- Digital planning
- Digital simulation
- Surgery
- Implant placement check
- Xray controllo

Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

Technical Notes

- **Posterolateral Approach**
- Femoral preparation and stem implantation: NAVIGATION
- Socket preparation and cup placement : ROBOTIC



Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

Technical Notes

A Combined Anteversion Technique for Robotic Arm Guided Total Hip Arthroplasty

Author: Lawrence D. Dorr, M.D., Medical Director, Total Joint Reconstruction, Dorr Arthritis Institute, Good Samaritan Hospital

Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

Patients: July 2014 – October 2015

136 cases

77 Hips 59 Knees

Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

	RIEPILOGO ANCA MAKO
Protesi TOT	77
Media Tempo robotico (min):	56,8
Uomini	41
Donne	36
Sx	31
Dx	46
	Ginocchio — Ginocchio — Anca — Lineare (Ginocchio) — Lineare (Anca)
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 4 numero casi	

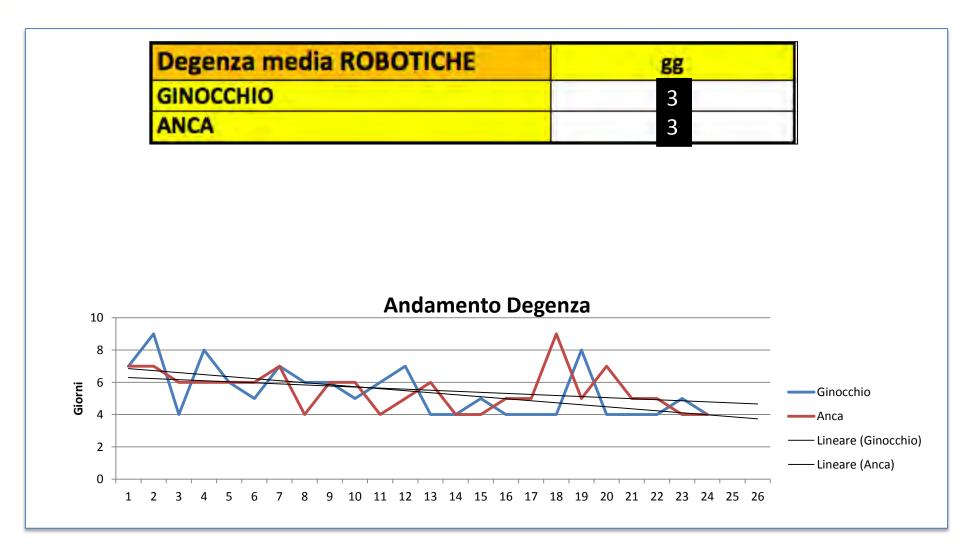
Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery


Results

Valori Medi			
	Prima dell'operazione	Pianificata	
	Vs. Anca Opposta	Vs.Anca Opposta	Vs. Pre-op
Lunghezza anca [mm]	-1,7	0,6	3,5
Offset combinato [mm]	2,9	1,8	0,3
Versione Femorale [°]	5,9		
	Effettivo (°)	Pianificata (°)	Naturale (°)
Inclinazione Coppa	41,2	40,6	
Versione Coppa	21,2	21,3	
Antiversione Combinata	37,1	36,0	
Versione Stelo	15,8	14,8	5,9
and the second	Vs. Anca Opposta	Vs. Pre-op	
Lunghezza Anca [mm]	2,1	3,8	
Offset Combinato [mm]	2,7	1,2	

Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

Robotic Assisted Orthopaedic Surgery


ANCA RX Pianificazione Preoperatoria

Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery

Chirurgia Ortopedica Robotica Assitita Robotic Assisted Orthopaedic Surgery **Conclusions**

- ✓ Complex technology
- ✓ Safe procedure
- ✓ Acceptable learning curve
- ✓ Faster recovery?
- ✓ Longer implants survivorship?
- ✓ Costs?
- ✓ Cost-effectiveness investigations

Roboti-cARe 2016

Robotic Cares in Arezzo - Multispeciality Live surgery event

April 12th-15th 2016 - Arezzo-San Donato Hospital

Chairmen: P. Caldora, G. Ceccarelli, P. G. Ciabatti, M. De Angelis, F. Lelli

Chairmen of scientific committee: Filippo Annino – filippo.annino@usl8.toscana.it

Scientific committee:

General Surgery Enrico Andolfi - *enri_72@yahoo.it* Alessia Biancafarina

Gynecology Ciro Sommella - ciro.sommella@usl8.toscana.it Ario Joghtapour - Serena Tarani

Orthopedics Pasquale Guastafierro - pguastafierro@gmail.com Enrico Manzi

Otolaryngology Giulia Burali - giuliaburali@gmail.com Luca Ciampelli

Urology Saba Khorrami - Sabakhorrami@gmail.com Valentina Giommoni

Gynacology

Live surgery coordination: Tiziano Verdacchi

THIN MUTURE

Orthopedics

thanks

Clinical and MRI results in 67 patients operated for gluteus medius and minimus tendon tears with a median follow-up of 4.6 years.

Konstantinos G Makridis, Michel Lequesne, Herve Bard, Patrick Djian

Institut Goethe-Clinique Nollet, Paris, France

Authors state no conflict of interest

Introduction

Although various techniques can be used to repair gluteal tendon tears, the long-term outcome is unclear and published studies typically involve only a small number of patients.

To determine:

- (1) if functional improvement can be obtained
- (2) if the repairs are continuous based on MRI
- (3) which factors determine success.

Patients and Methods

Period 2003-2010, 73 patients, one surgeon

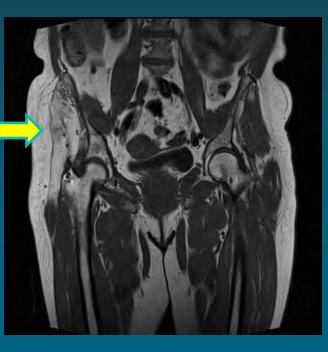
Inclusion criteria:

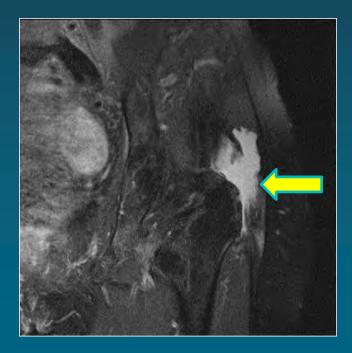
- Patients with spontaneous ruptures of GMe and/or GMi
- Patients with ruptures resulting from acute or repetitive low-energy mechanisms

Exclusion criteria:

- Patients having ruptures resulting from high-energy mechanisms
- Patients with systemic inflammatory disease
- Patients with prior hip arthroplasty

Patients and Methods


Location, type of pain, Gait analysis Resisted external derotation test in supine and prone positions The 30 second single-leg stance test The resisted abduction test

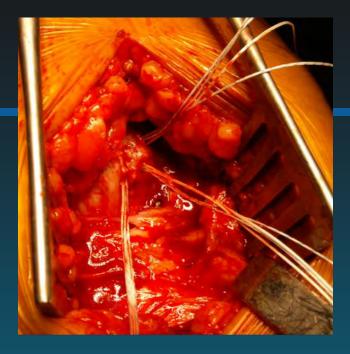

The Visual Analogue Scale (VAS) for pain Verbal Scale for Self-assessment of Handicap Lequesne Index of Severity for Osteoarthritis of the Hip Harris Hip Score were completed before and after surgery

Patients and Methods

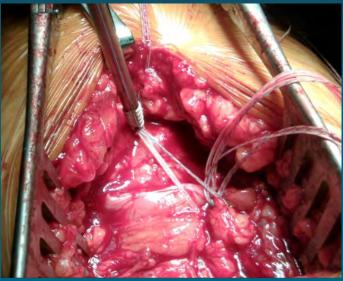
Radiographs with anteroposterior, and false profile views MRI of the pelvis and the affected trochanteric region (with small fields)

Fatty degeneration of GMe

Rupture of GMe


Surgical technique

Lateral decubitus, incision 8–10cm centered on the tip of greater trochanter

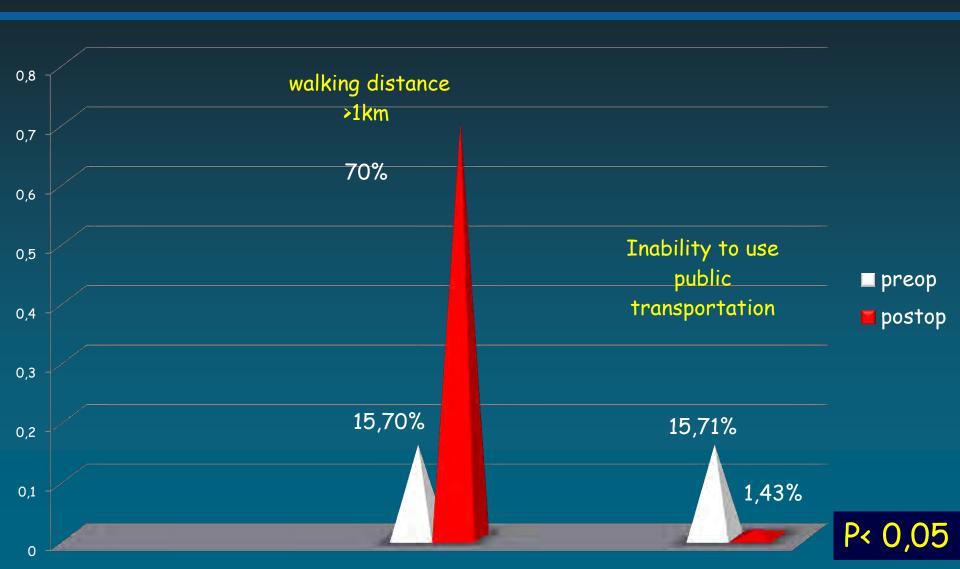

Bursectomy, inspection of the lesion: ANATOMICAL REPAIR

Two or three bone-anchors depending on the extension of the rupture

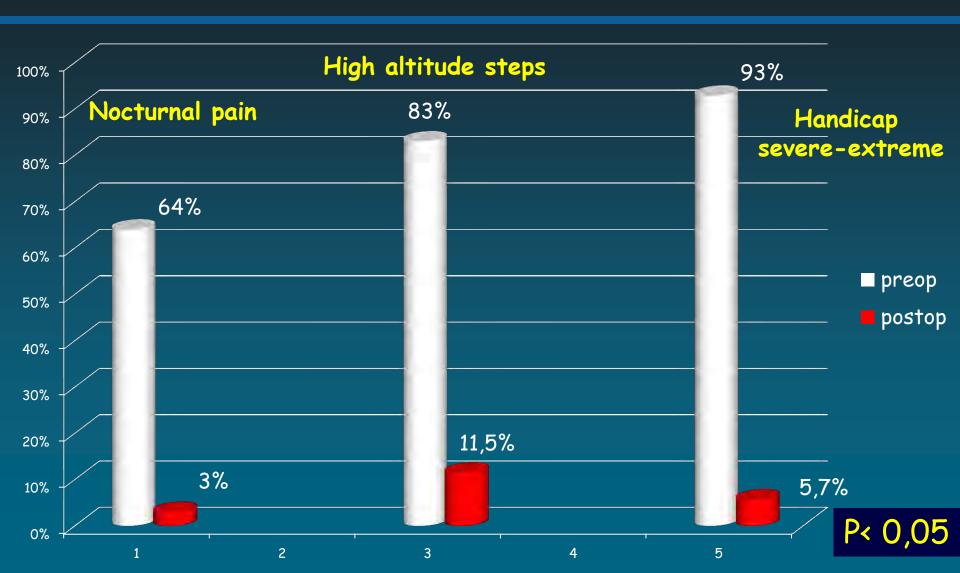
DOUBLE-ROW TECHNIQUE

Patients	67	
Men	5	
Women	62	
Age	68 (25-87)	
BMI	24,6 (20,4-32)	
Duration of pain	2,8 years (6 months-10 years)	
Follow-up	4,6 years (1-8 years)	

- 45 hips (64%) had a tear of the central lateral part of the GMe
- 21 hips (30%) had a rupture of anterior half of the GMe
- 4 hips (6%) had a rupture of posterior half of the GMe
- GMi ruptures were found in 23 hips (33%)


Results: clinical evaluation

- Resisted external derotation test in supine position: positive in 97% of patients preoperatively
- Resisted abduction test: positive in 89% of patients preoperatively
- 30 second single-leg stance test: positive in 93% of patients preoperatively
- Trendelenburg gait: positive in 66% of patients preoperatively



Results

Results

- 2 patients had a re-rupture (3 %) (reoperation using the same technique; GMe healed uneventfully)
- **9 patients complained of persistent pain** (treatment with postoperative infiltrations and physiotherapy)

Analysis of the results Possible risk factor

AGE

Analysis of the results Possible risk factor

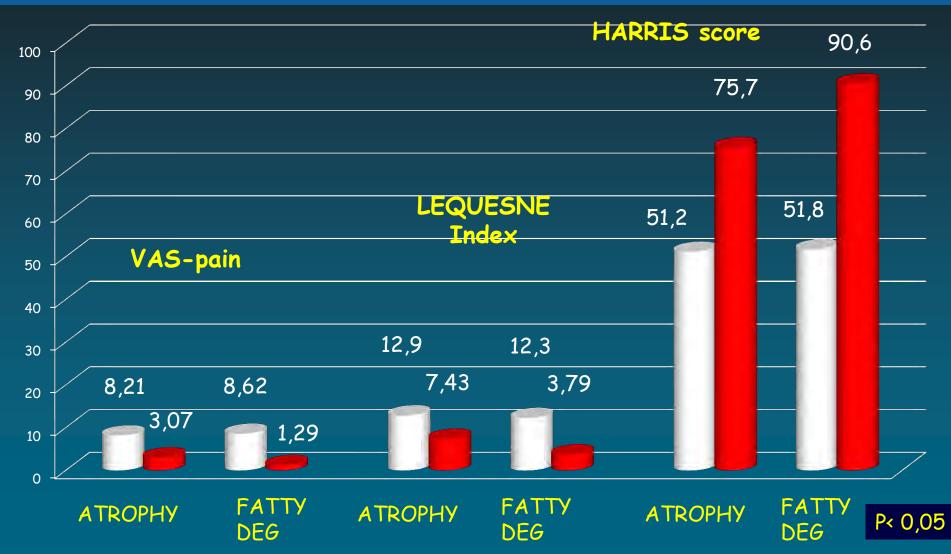
AGE

Analysis of the results Possible risk factor

AGE

BMT

BMI	23,2 (20,8-24,9) <mark>38 hips</mark>		27 (25-32) 32 hips	
	Preop	Postop	Preop	Postop
VAS-pain	8,81	1,58	8,59	1,81
LEQUESNE Index	12,26	3,88	12,25	4,28
HARRIS score	50,42	88,84	50,69	86,9
Pain at high altit. steps	84%	8%	81%	15%
HANDICAP	97%	5%	91%	6%


N.S.

MUSCLE A TROPHY

P< 0,05

	ATROPHY 14 hips		NORMAL QUALITY 35 hips	
	Preop	Postop	Preop	Postop
VAS-pain	8,21	3,07	8,87	1,34
LEQUESNE Index	12,9	7,43	12,25	3,19
HARRIS score	51,2	75,7	49,3	90,7
Pain at high altit. steps	78,6%	21%	89,5%	8%
HANDICAP	90,5%	21%	95%	2,5%

MUSCLE A TROPHY

FATTY DEGENERATION

N.S

	Muscles with Fatty Deg. 21 hips		Normal muscles 35 hips	
	Preop	Postop	Preop	Postop
VAS-pain	8,62	1,29	8,87	1,34
LEQUESNE Index	12,3	3,79	12,25	3,19
HARRIS score	51,8	90,6	49,3	90,74
Pain at high altit. steps	76%	5%	89,5%	8%
HANDICAP	90%	0%	95%	2,5%

- Diagnosis of exclusion
- The application of specific diagnostic tests led to an accurate diagnosis
- The Trendelenburg sign is not an accurate diagnostic test and this is probably due to the conservation of some fibers of GMe and/or GMi

Discussion

 $\mbox{MRI} \rightarrow \mbox{diagnostic}$ method of choice for the evaluation of the muscle atrophy and fatty degeneration

Pan-pelvic T1-weighted and unilateral T2-fat saturated coronal, axial and sagittal small field views

Discussion

Age and BMI are probably not risk factors for the therapeutic prognosis of GMe/GMi ruptures

Fatty degeneration, especially stage I and II did not prove to be a risk factor

Muscular atrophy seems to negatively affect the treatment outcome and should be carefully evaluated before surgery

Conclusion

Using an open double-row technique to repair gluteal tendon tears led to 85% of patients having good clinical results with significant improvement in symptoms and disappearance of abnormal findings on MRI.

REFRACTORY CASES WITH PERSISTENT PAIN, POOR FUNCTIONAL STATUS AND NON-ATROPHIED GLUTEI MUSCLES ARE THE BEST INDICATION FOR THIS SURGICAL TREATMENT

- 1. Cormier G, Berthelot JM, Maugars Y. Gluteus tendon rupture is under-recognized by French orthopedic surgeons: results of a mail survey. *Joint Bone Spine 2006;73:411-413.*
- 2. Kong A, Van der Vliet A, Zadow S. MRI and US of gluteal tendinopathy in greater trochanteric pain syndrome. *Eur Radiol 2007;17:1772-1783*.
- 3. Lequesne M, Mathieu P, Vuillemin-Bodaghi V, Bard H, Djian P. Gluteal tendinopathy in refractory greater trochanter pain syndrome: diagnostic value of two clinical tests. *Arthritis and rheumatism 2008;15;59:241-246.*
- 4. Lequesne M, Mery C et al. Indexes of severity for osteoarthritis of the hip and knee. Scand J Rheumatology 1987; Supplement 65:85-89.
- 5. Walsh MJ, Walton JR, Walsh NA. Surgical repair of the gluteal tendons: a report of 72 cases. *J Arthroplasty 2011;26:1514-1519.*
- 6. Lequesne M, Djian P, Vuillemin V, Mathieu P. Prospective study of refractory greater trochanter pain syndrome. MRI findings of gluteal tendon tears seen at surgery. Clinical and MRI results of tendon repair. *Joint Bone Spine 2008;75:458-464*.
- 7. Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elbow Surg 1999;8:599-605.

THANK YOU FOR YOUR PATIENCE

MERCI DE VOTRE PATIENCE

The use of 3T MRI in diagnosing intra-articular hip pathology

Mr J. Lynch, Mr O. Diamond, Mr J O'Hara, Mr E Bache Dr S. James, Mr C. McBryde

> Royal Orthopaedic Hospital Birmingham, UK

HIP

The prevalence of acetabular labral tears and associated pathology in a young asymptomatic population

A. J. J. Lee, P. Armour, D. Thind, M. H. Coates, A. C. L. Kang

From Christchurch Hospital, New Zealand Acetabular labral tears and associated intra-articular pathology of the hip have been recognised as a source of symptoms. However, it is now appreciated that there is a relatively high prevalence of asymptomatic labral tears. In this study, 70 young asymptomatic adult volunteers with a mean age of 26 years (19 to 41) were recruited and underwent three tesla non-arthrographic MR scans. There were 47 women (67.1%) and 23 men (32.9%).

Labral tears were found in 27 volunteers (38.6%); these were an isolated finding in 16 (22.9%) and were associated with other intra-articular pathology in the remaining 11 (15.7%) volunteers. Furthermore, five (7.1%) had intra-articular pathology without an associated labral tear.

Given the high prevalence of labral pathology in the asymptomatic population, it is important to confirm that a patient's symptoms are due to the demonstrated abnormalities when considering surgery.

Cite this article: Bone Joint J 2015;97-B:623-7.

Background

 Magnetic Resonance Arthrogram (MRA) has been the gold standard imaging of the hip when investigating for acetabular labral tears

MRA Potential Disadvantages

- Intra-articular injection of contrast
 - Uncomfortable
 - Infection risk (1 in 40,000)
 - Allergic reaction (1 in 2000)
 - Contrast hinder

Case Report

Chondrolysis of the Hip following Septic Arthritis: A Rare Complication of Magnetic Resonance Arthrography

Barak Haviv,^{1,2} Rafael Thein,^{1,2} Alon Burg,³ Snir Heller,³ Shlomo Bronak,¹ and Steven Velkes^{2,3}

Case Reports in Orthopedics Volume 2013, Article ID 840681, 3 pages

MRI Potential Advantages

Eur J Orthop Surg Traumatol (2013) 23:335–344 DOI 10.1007/s00590-012-0972-5

ORIGINAL ARTICLE

The diagnostic test accuracy of magnetic resonance imaging, magnetic resonance arthrography and computer tomography in the detection of chondral lesions of the hip

Toby O. Smith · Michael Simpson · Vivian Ejindu · Caroline B. Hing

Meta-analysis 18 studies with 648 hips

MRI is superior to MRA in detection of chondral abnormalities of the hip

MUSCULOSKELETAL

The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis

Toby O. Smith · Gemma Hilton · Andoni P. Toms · Simon T. Donell · Caroline B. Hing

- 19 papers with 881 hips
- MRI 13 studies
- MR arthrography 16 studies
- MRI (0.5-3T) MRA (0.5-3T)
- MRA appears to be superior to MRI for labral tears

Aim

 To assess the sensitivity and specificity of HRNC3T MRI in diagnosing labral tears in the ROH

Methods

Methods

- 100 consecutive hip arthroscopy patients
- Single surgeon
- All patients had HRNC3T MRI pre-op and no previous hip surgery
- Four Musculoskeletal Radiology Consultants
- Operation notes and MRI reports reviewed and analysed

HRNC3T MRI Protocol

- Initial PDFS axial of pelvis
- High resolution, small field of view PD fat suppressed axial oblique and coronal oblique of the hip (3mm)
- PD sagittal and T1 axial
- PDFS axial oblique and coronal oblique are the best sequences to assess the labrum, cartilage and CAM.

- 100 consecutive hip arthrocopy patients
- 1/12/14 to 31/8/15
- 68 female and 32 male patients
- Average time between scan and operation 8.4 months (<1 - 25 months)
- 4 Radiology Consultants involved in reporting
 - A 24
 B 30
 C 30
 - ≻D 16

 84 acetabular labral tears were seen at hip arthroscopy
 ▶60 of these were correctly identified on MRI

(Sensitivity of 71.4%)

• 16 patients were found to have no labral tear at arthroscopy.

➤14 MRI reports correctly reported this (Specificity 87.5%)

• Great variation was seen between Radiologists.

	Sensitivity/Specificity:	Numbers
Radiologist A-	90.4% /100%	24
Radiologist B -	60.8%/71.4%	30
Radiologist C-	55.5%/100%	30
Radiologist D-	92.3%/100%	16

• Great variation was seen between Radiologists.

	Sensitivity/Specificity:	Numbers
Radiologist A-	90.4% /100%	<u>24</u>
Radiologist B -	60.8%/71.4%	30
Radiologist C-	55.5%/100%	30
<u>Radiologist D-</u>	<u>92.3%/100%</u>	<u>16</u>

The Multidisciplinary Team Meeting

- Both Radiologist with higher accuracy participate in the YAH MDT
- Feedback loop
- High Volume does not equate to high standards without appropriate feedback

Cross-tabs

	TP +TN	FP + FN
MDT Radiologist	37	3
Non-MDT Radiologist	37	23

Radiologists who attended the YAH MDT reported labral pathology more accurately

The Fisher exact test statistic value is 0.000457. The result is significant at p < 0.01.

Discussion

MR Arthrography of the Adult Acetabular Capsular–Labral Complex: Correlation with Surgery and Anatomy

Christian Czerny¹ Siegfried Hofmann² Michael Urban³ Christian Tschauner⁴ Andreas Neuhold⁵ Michael Pretterklieber⁶ Michael P. Recht⁷ Josef Kramer^{1,8} **OBJECTIVE.** Our purpose was to describe the appearance of the acetabular capsular–labral complex on MR arthrography and to correlate this appearance with surgical findings in adult patients and with gross anatomic findings in cadavers.

SUBJECTS AND METHODS. MR arthrography of the hip joint was performed in 40 patients and six cadavers. All patients underwent subsequent arthrotomy of the hip. MR arthrography consisted of a T1-weighted three-dimensional gradient-echo sequence in both the coronal oblique and sagittal oblique planes after intraarticular injection of a 2 mmol/l solution of gadopentetate dimeglumine. The normal and pathologic appearance of the capsular–labral complex was assessed, and the labra were evaluated on the basis of morphology, signal intensity, presence of a tear, and attachment to the acetabulum. MR arthrography findings were correlated with the surgical results in all patients and with the anatomic sections of the cadaveric hip joint specimens.

RESULTS. MR arthrography images of the T1-weighted three-dimensional gradient-echo sequences allowed visualization of the anatomic structures. The normal labrum was triangular, without any sublabral sulcus, and of homogeneous low signal intensity. A recess between the labrum and the joint capsule could be identified in instances in which no thickened labrum was present. Labral lesions included labral degeneration, a tear, or a detached labrum either with or without thickening of the labrum. The sensitivity for detection and correct staging of labral lesions with MR arthrography in the patient study was 91%; the specificity, 71%; and the accuracy, 88%.

CONCLUSION. MR arthrography with T1-weighted three-dimensional gradient-echo sequences allows excellent assessment of the normal and pathologic acetabular capsular-labral complex.

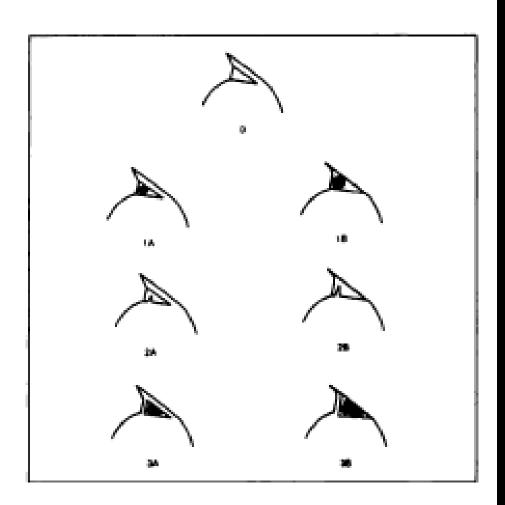


Fig. 1.—Drawing shows different types of acetabular labrum according to staging system described in Materials and Methods.

Magnetic Resonance Imaging of the Hip: Detection of Labral and Chondral Abnormalities Using Noncontrast Imaging

Douglas N. Mintz, M.D., Timothy Hooper, M.B.B.S., David Connell, M.B.B.S., Robert Buly, M.D., Douglas E. Padgett, M.D., and Hollis G. Potter, M.D.

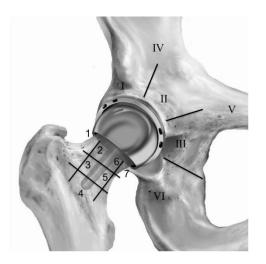
Purpose: Traditional imaging techniques have limited ability to detect subtle chondral and labral injuries of the hip. We performed a retrospective review of patients who underwent magnetic resonance imaging (MRI) of the hip and subsequent hip arthroscopy in order to evaluate the ability of optimized, noncontrast MRI to identify tears of the acetabular labrum and defects in articular cartilage. Type of Study: Retrospective review of a consecutive sample. Methods: Between January 1997 and July 2000, 92 patients had MRI of the hip, followed by arthroscopic surgery of that hip by 1 of 2 surgeons (R.B., D.E.P.). Two musculoskeletal MR radiologists blinded to the initial MRI and surgical findings, independently interpreted the studies, looking for the location and degree of articular cartilage and acetabular labral pathology. Results: Of the 92 patients studied, each of 2 radiologists correctly identified 83 (94%) and 84 (95%) of the 88 labral tears present at surgery, respectively. There was 92% interobserver agreement on the MRI studies. For articular cartilage defects on the femoral head and acetabulum, there was good agreement (92% and 86% within 1 grade) between MRI and surgical grading and between the 2 MR readers (kappa of 0.8 for femoral head cartilage and 0.7 for acetabular cartilage). Conclusions: This study shows that noncontrast MRI of the hip, using an optimized protocol, can noninvasively identify labral and chondral pathology. Such information may facilitate deciding which patients warrant surgical intervention, thus preserving hip arthroscopy as a therapeutic tool. Level of Evidence: Level II, Development of Diagnostic Criteria Study. Key Words: Acetabular labrum-Articular cartilage-Cartilage-Hip-Labrum-Magnetic resonance imaging.

Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 21, No 4 (April), 2005: pp 385-393

Examination of acetabular labral tear: a continued diagnostic challenge

Michael P Reiman,¹ Richard C MatherIII,² Thomas W Hash II,² Chad E Cook³

Br J Sports Med 2014;48:311-319


- History
- Examination
- Appropriate and combined radiology
- Diagnostic injection

Conclusions

Conclusions

- HRNC3T MRI can be a reliable and accurate method of assessing the labrum
- Everybody has a different 'Spin' !
- Practice Audit is essential to ensure standards
- MDT benefits
- Future work needs to give description of normal and pathological labral morphology in hip HRNC3T MRI

RADIOGRAPHIC EVALUATION OF HIP RESURFACING: VALIDATION OF A NEW ZONAL SYSTEM

Sensitivity and specificity in detecting high wear

Catherine Van Der Straeten¹, Alessandro Calistri², George Grammatopoulos, Damien Van Quickenborne², Bart De Roest² Koen De Smet²

¹MSK Lab, Department of Surgery and Cancer, Imperial College, London, UK ²ANCA Medical Centre, Ghent, Belgium

RADIOGRAPHIC EVALUATION OF HIP RESURFACING: VALIDATION OF A NEW ZONAL SYSTEM

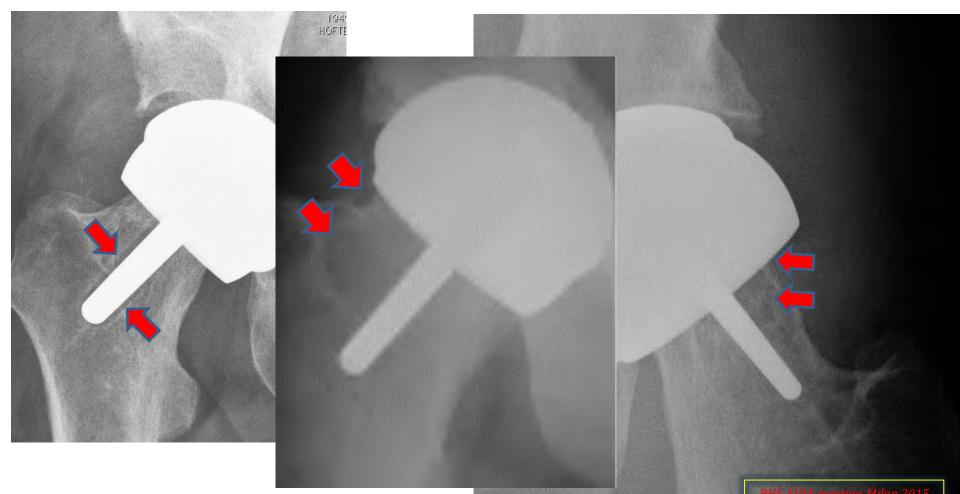
Sensitivity and specificity in detecting high wear

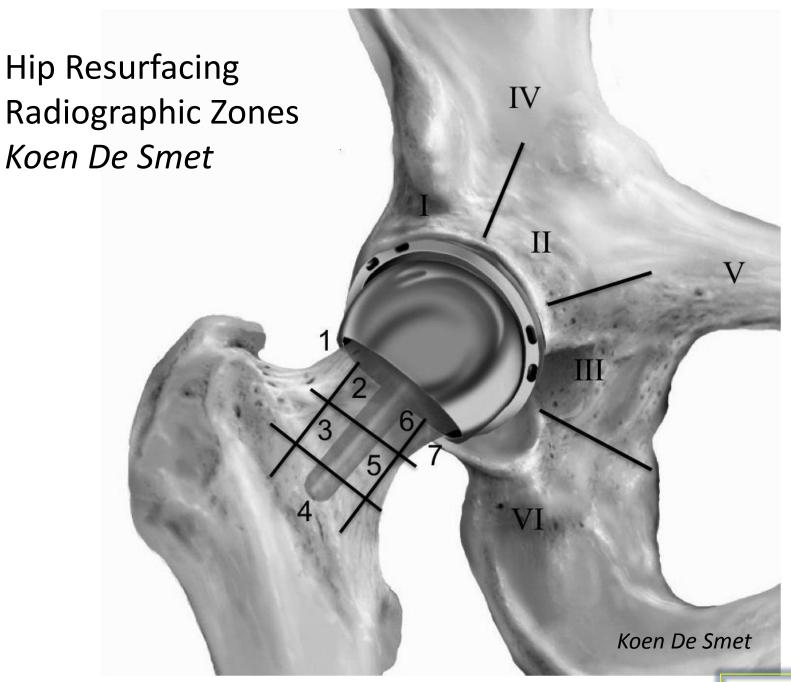
Presenter: Catherine Van Der Straeten, MD, PhD

The authors declare that the research for and communication of this independent body of work does not constitute any financial or other conflict of interest.

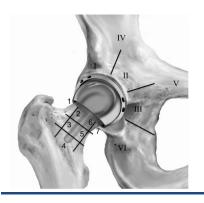
Introduction

- Hip Resurfacing requires new XRay evaluation protocol
- Acetabular component similar to THA
- Femoral component different:
 - 1. no implant in femoral canal
 - 2. metallic femoral head overlies and


obscures junctions bone-cement


and cement-prosthesis

Femoral Component Evaluation

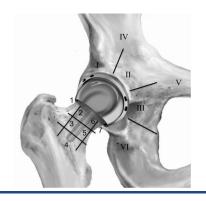

Study Objectives

Recommended screening tools for FU of MoM HA:

- Metal ions & cross-sectional imaging (US – MRI)

But: XRays = easy/cheap traditional FU method \Rightarrow

- Test the efficacy of radiographs in identifying a problem with a resurfaced hip
- Correlate radiographic features with outcome

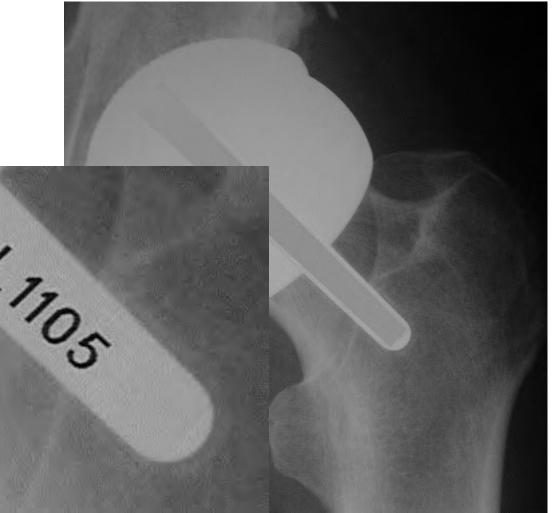


Patients and Methods

Retrospective study: Radiographic evaluation of

- 711 hip resurfacings (HRA) of 10 different designs
- 611 in situ (surgeon KDS) min 2 Xrays at >12mos
- 100 revised (45 primary KDS 55 referrals)

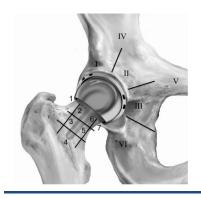
Clinical evaluation: Harris Hip Score (HHS) Metal ion measurements (Cr – Co serum - ICP-MS) Adverse local tissue reactions (ALTR): intraop - MRI


Classification of radiographic patterns

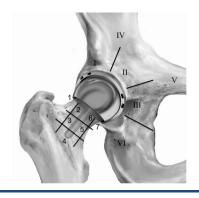
- NORMAL = no findings
- BORDERLINE: findings not considered pathological when stable and not associated with migration
 - > reactive lines (sclerotic lines pedestal sign)
 - > cortical thickening
 - > cortical remodelling following impingement
 - > cancellous condensation

Reactive lines –

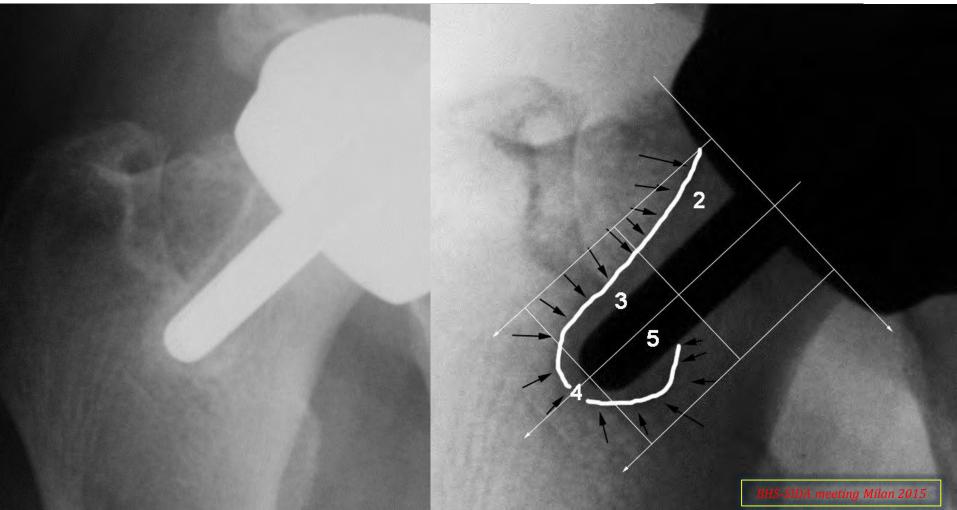
Stable pedestal sign



Borderline: Impingement signs

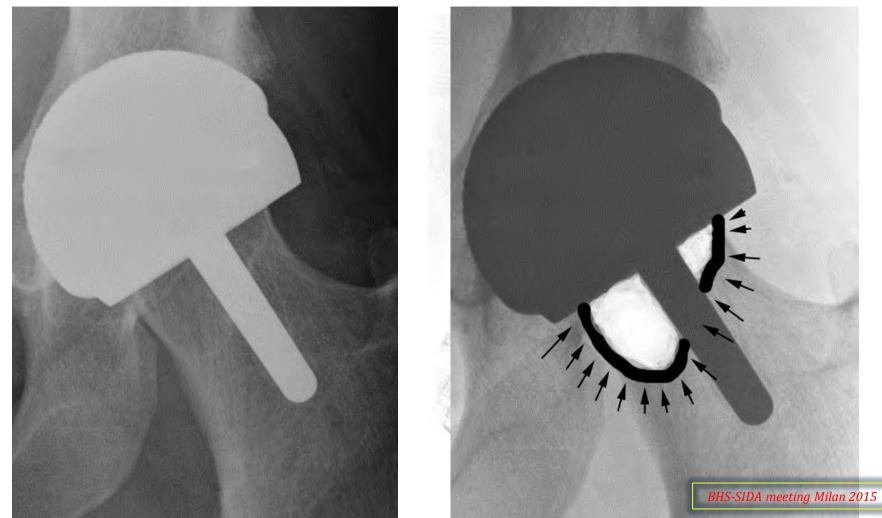

Progressive: migration? lucent line?
 Impingement > loosening, wear

Lobster sign

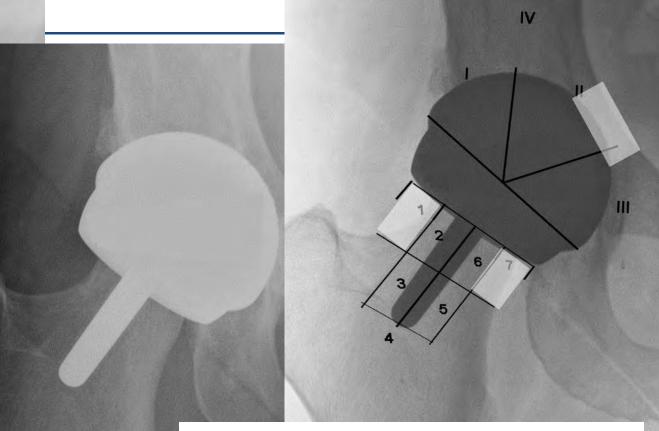


Classification of radiographic patterns

- SINISTER: findings considered pathological
 - > Lucent lines: 1mm, 2mm, 3mm
 - > Osteolytic areas
 - > Cancellous bone radiolucency
 - > Cortical resorption



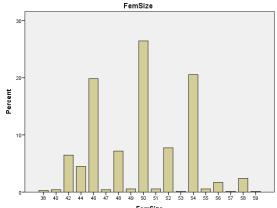
Lucent lines

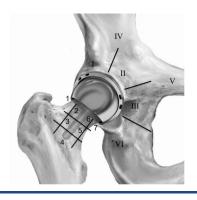


Osteolysis

Neck narrowing

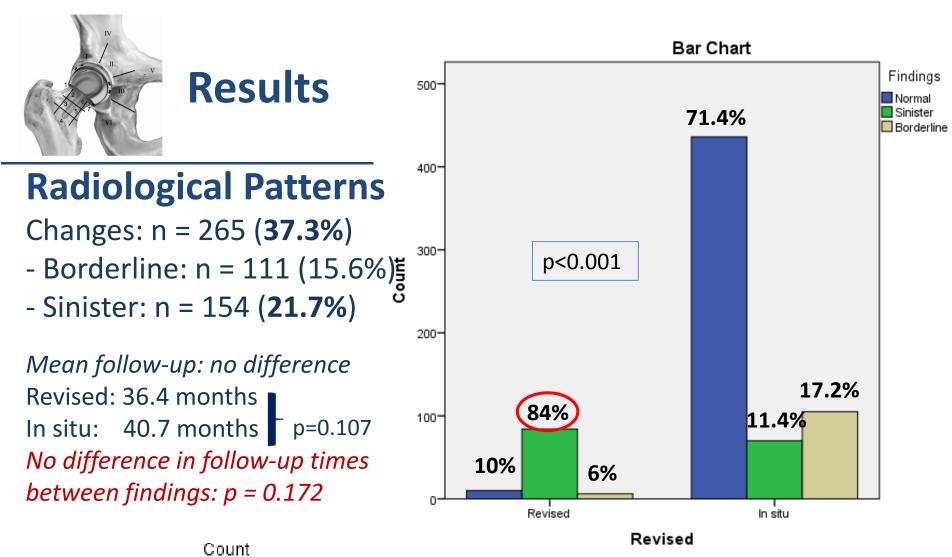
Bone loss in zones 1 and 7 – often stabilizes Progressive Neck Narrowing of >10% may be associated with increased wear and ALTR


postop


2 years

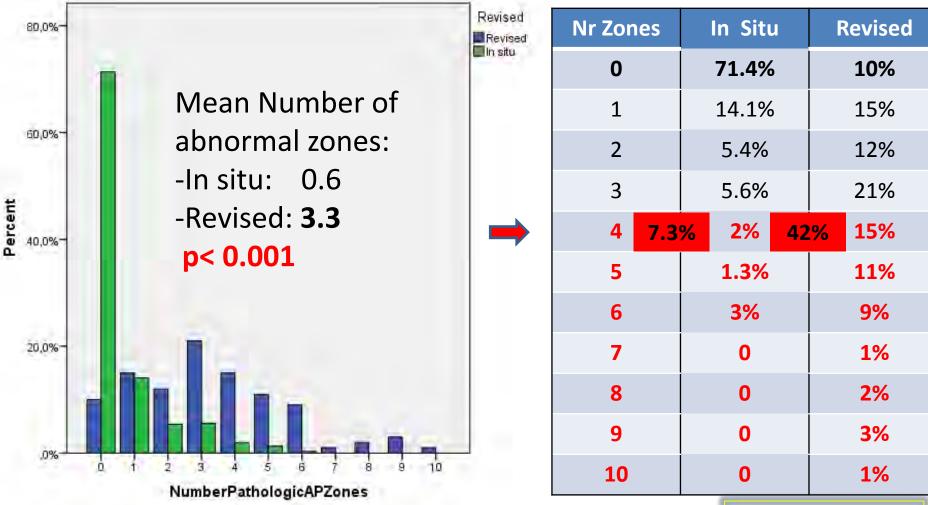
Results: Demographics

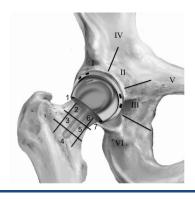
- 711 HRA in 703 patients (8 bilateral HRA)
- Mean age : **53 yrs** (29-70)
- 439 Males (62.4%) 264 Females (37.6%)
- 10 HRA designs: BHR 62%, Conserve plus 23%, ASR 3.8%
- Femoral comp. size: Mean 49.5mm
 <50mm: 39% ≥50mm: 61%
- Follow-up: mean 40 mos (12-144)
- Harris Hip score last follow-up mean **95.1** (median 100 – range 25-100)




Results: Revisions

- Total n = 100 HRA : 39 M 57 F (4 bilat revisions)
- 45 primary KDS 55 referrals (primary HRA elsewhere)
- Reasons for revision: (no fractures: early/1 Xray)
 - Component malpositioning: 50 (47 cups)
 - Component loosening: 22
 - Impingement: 4
 - Infection: 8
 - Metal sensitivity: 8
 - High ions ± pain: 7


Soft tissue reaction (ALTR): n = 52 Pronounced Metallosis: n = 38



		Findings			
		Normal	Sinister	Borderline	Total
Revised	Revised	10	84	6	100
	In situ	436	70	105	611
Total		446	154	111	711

Number of zones with abnormal findings

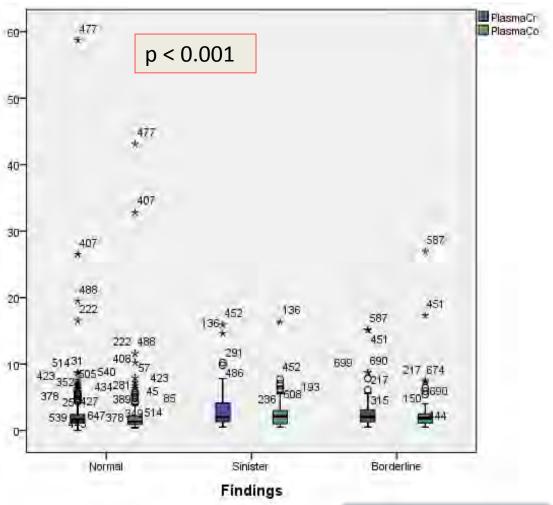
Radiological patterns vs Clinical Outcome (HHS) – Implant position

No

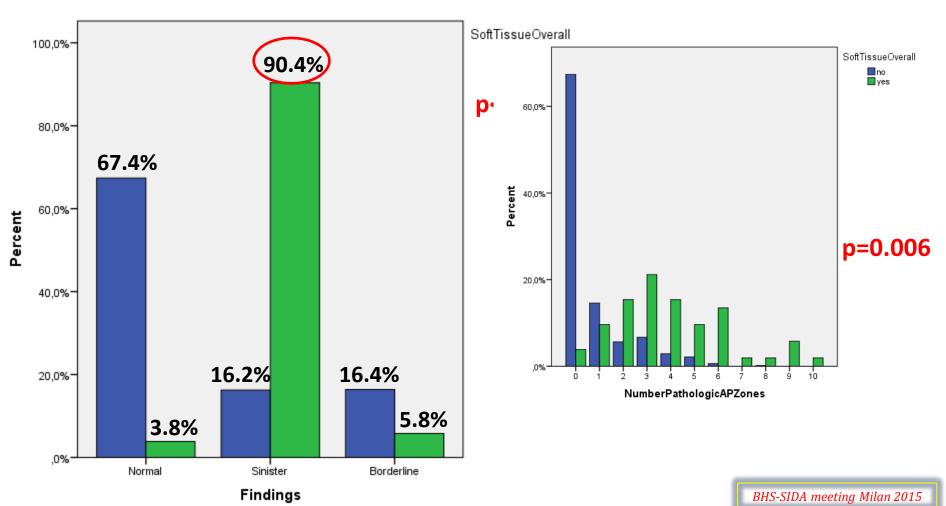
BHS-SIDA meeting Milan 2015

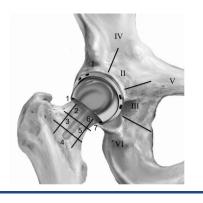
Findings

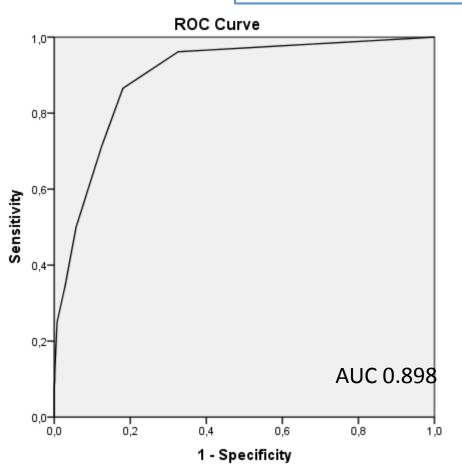
Yes


Acetabular position safe zone **Mean Harris Hip Scores:** p<0.001 Bar Chart SafeZone 400-Overall p<0.001 Normal: 98.11 300-Borderline: 96.23 Count Sinister: 85.36 200-20% 100-34% 16% Normal Sinister Borderline

Radiological patterns vs Metal Ion Levels


	Cr µg/l	Co µg/l
Normal Mean	2.55	2.23
Median	1.60	1.40
Sinister Mean	17.43	17.50
Median	3.95	2.85
Borderline Mean	3.35	3.06
Median	2.00	1.90


Sinister vs normal/borderline: **p<0.001** Borderline vs normal: p=0.01


Radiological patterns vs Soft Tissue Reactions

Predictive value of radiographs

ROC Analysis: Number abnormal zones — ALTR?

Radiographic findings in **3.5 zones**: Sensitivity 50%] in detecting hips Specificity 94.2%] with ALTR

ODDS RATIO of a HRA with sinister findings in ≥ 4 zones having a soft tissue reaction = 49

Conclusions

- Accurate evaluation of progressive changes: assessment in 3 (6) acetabular - 7 femoral AP zones
- Sinister changes in 84% of problematic hips 90.4% of proven ALTR
- Abnormal in \geq 4 zones (3.5) > 94% specificity ALTR
- High correlation of radiographic patterns with clinical outcome and metal ion levels
- Normal Xray does not mean 'No problems' → Clinical, metal ions, cross-sectional imaging

